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Abstract

We propose a nonparametric procedure to achieve fast inference in generative graphical
models when the number of latent states is very large. The approach is based on iterative
latent variable preselection, where we alternate between learning a ‘selection function’
to reveal the relevant latent variables, and using this to obtain a compact approximation
of the posterior distribution for EM; this can make inference possible where the number
of possible latent states is e.g. exponential in the number of latent variables, whereas an
exact approach would be computationally infeasible. To increase the efficiency of our
approach, we can draw samples from the compact approximate posterior distribution and
compute the parameters in the M-step as usual. We refer to the procedure combining these
two approximation methods as Select and Sample.

In numerical experiments on artificial data and image patches, we compare the perfor-
mance of the algorithms to the performance of exact EM, latent variable preselection
alone, sampling alone, and the combination of the two for the Select and Sample ap-
proach. For this Sparse Coding example we show the effectiveness and efficiency: it
enables applications easily exceeding a thousand observed and a thousand hidden dimen-
sions.

To apply the Select and Sample approach to a more complex model, we propose a novel,
complex Sparse Coding model that targets low-level image structures, such as edges and
their occlusions. The model uses a Spike-and-Slab prior distribution and has a nonlinear-
ity in the data likelihood, both of which lead to a highly multimodal posterior distribution
and computational/analytical intractabilities. We refer to this model as SSMCA. For ade-
quate representation of the complex posterior, we develop an exact Gibbs sampler based
on the exact form of the posterior distribution. Results on artificial and natural images
show that SSMCA can model the generating process of images with occlusions, includ-
ing extracting individual edge-like structures that occlude each other, and produce results
that are neurally consistent with in vivo neural recordings and with the model’s prior
beliefs.

We learn the selection function entirely from the observed data and current EM state
via Gaussian process regression, calling this method GP-select. This is by contrast with
earlier approaches, where selection functions were manually-designed for each problem
setting. We show that our approach performs as well as these bespoke selection functions
on a wide variety of inference problems: in particular, for the challenging case of a hi-
erarchical model for object localization with occlusion, we achieve results that match a
customized state-of-the-art selection method, at a far lower computational cost.



Zusammenfassung

Wir beschreiben ein nichtparametrisches Verfahren fiir schnelle Inferenz in generativen
graphischen Modellen mit extrem grofen latenten Zustandsraumen. Das Verfahren basiert
auf iterativer Selektion der latenten Variablen. Zunichst wird eine ‘Selektionsfunktion’
zur Aufdeckung von relevanten latenten Zustinden gelernt, welche im néchsten Schritt
fiir eine kompakte Approximierung der a-posteriori Verteilung im EM Algorithmus ver-
wendet wird. Dies ermdglicht Inferenz wenn die Anzahl der latenten Zustinde exponen-
tiell mit der Anzahl der latenten Variablen wichst. Fiir verbesserte Effizienz, konnen wir
Stichproben von der a-posteriori Verteilung benutzen um damit im M-Schritt die Parame-
ter stochastisch zu approximieren. Wir nennen den vorgestellten Algorithmus ‘Select and
Sample’.

Wir vergleichen unseren Algorithmus mit den folgenden EM Varianten auf kiinstlichen
Daten und Bildausschnitten: exakter EM, nur Vorselektion der latenten Variablen, nur
stochastische Approximation, und die Kombination der beiden Approximationen des ‘Se-
lect and Sample’ Verfahrens. Unser Beispiel belegt die Effizienz unserer Methode, die
Inferenz mit tausenden Datenpunkten und latenten Dimensionen ermoglicht.

Um ‘Select and Sample’ auf ein komplizierteres Modell anzuwenden, entwickeln wir ein
neues complexes ‘Sparse Coding’” Modell, welches auf griindsitzlichen Bildeigenschaften
wie z.B. Kanten und deren tiberlagerung basiert. Unser Modell, genannt ‘SSMCA’, nutzt
eine ‘Spike-and-Slab’ a-priori Verteilung und eine nicht-lineare Likelihoodfunktion, was
in einer hochdimensionalen, multi-modalen a-posteriori Verteilung fithrt. Um die kom-
plexe a-posteriori Verteilung genau vergleichen zu konnen entwickeln wir eine ‘Gibbs
Sampling’ Methode, welche genaue Form der Verteilung verwendet. Unsere Ergebnisse
auf kiinstlichen und natiirlichen Bildern zeigen, dass ‘SSMCA’ den generativen Prozess
der Bildern mit iiberlagerungen abbilden kann: Sowohl Kantenstrukturen als auch iiber-
lagerungen konnen extrahiert werden und sind neuronal plausibel.

Wir lernen die Selektionsfunktion ausschliesslich von den beobachteten Daten und dem
aktuellen EM Zustand mittels Gauss Prozessen. Wir nennen diese Methode 'GP-Select’.
Dies kontrastiert frithere Verfahren, bei denen die Selektionsfunktion per Hand fiir jedes
Problem neu entwickelt werden musste. Wir zeigen, dass unsere Methode Ergebnisse pro-
duziert, die genauso gut wie die von Hand entwickelten Selektionsfunktionen sind — auf
einer Vielfalt von Inferenzproblemen. Unsere Ergebnisse im herausfordernden Fall von
hierarchischen Modellen fiir Objektlokalisierung mit Uberlagerungen sind en-par mit ein-
er speziell angepassten modernsten Selektionsmethode, bei deutlich reduzierter Rechen-
szeit.
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Chapter 1

Introduction

We have entered the era of big data - there is a wealth of data available from countless
sources, from webpages to YouTube videos to images, and so on. In order to understand,
learn, and extract patterns from this huge plethora of data, we need automated methods
of data analysis. Machine learning is an interdisciplinary field that offers such methods
— it focuses on mathematical foundations and practical applications of systems that can
find structure, predict new outcomes, and choose actions wisely. Thus we define machine
learning to be a set of methods capable of automatically detecting patterns in data, using
the uncovered patterns to predict future data, or to make decisions under uncertainty (even
the decision to collect more data).

The probabilistic approach to machine learning uses the tools of probability theory to
solve problems involving uncertainty. This approach allows us to quantify and make use
of this information instead of regarding it as a nuisance to solving the problem. Uncer-
tainty can come in many forms - each observation/data point provides information, but we
are never completely certain about e.g. what can some past data predict about the future,
or what the best model is to explain some data, and so on. This is taken into consider-
ation when forming probabilistic models of data. Figure 1.1 shows an illustration of a
very simple probabilistic graphical model - the observed data is denoted by y which are
conditioned on the (latent) variables denoted by s. In the latent variable model setting,
we would only observe y from which the values of latent variables s could be inferred.
Following Bayesian reasoning, we denote a prior distribution over the latent variables s
with p(s) and the likelihood of the data with p(y|s). Furthermore, this can also be treated
as a generative model, as the process that generated the observations p(y|s) can be mod-
elled, necessitating the modelling of the joint distribution of both the latent and observed
variables p(y, ).

This body of work focuses on probabilistic modelling and inference in generative graph-
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Figure 1.1: lllustration of a simple graphical
model, where the node with s is data mod- p(s)
elled by the probability distribution p(s) and
the node with y represents the data observed
given s for the data likelihood p(y|s). In the

case of a latent variable model, s is not ob- p (y ,8)

served. This can depict a generative model

if the goal is to model the generation process @
of the observations p(y|s), for which the joint

distribution of both the latent and observed p(yls)

variables p(y, s) needs to be modelled.

ical models with a large number of hidden variables, each of which may take on one
of several state values. Without adequate approximations, inference in these models be-
comes computationally (and sometimes also analytically) intractable, thus in this thesis
we develop methods to efficiently overcome these challenges.

1.1 Problem Setting

When hidden variables are present, learning of parameters in probabilistic graphical mod-
els can quickly become intractable as the dimensionality of hidden states increases. Con-
sider, for instance, the floor of a nursery populated with different toys, and images of
this floor large enough to contain a number of toys. A nursery easily contains a hundred
different toys and any subset of these hundred toys may appear in any image. For one
hundred toys there is therefore a combinatorics of 2!%° different combinations of toys that
can make up an image. An inference task may now be to infer, for any given image,
the toys it contains. If we approached this task using a probabilistic graphical model, we
would define a basic such model using a set of one hundred hidden variables (one for each
toy). Given a specific image, inference would then take the form of computing the poste-
rior probability for any combination of toys, and from this, for example, the probability
of each toy to be in the image can be computed. If done exactly, this process needs to
evaluate all the 2! different toy combinations which easily exceeds currently available
computational resources.

While there are also many tasks for which graphical models with few latent variables are
sufficient, the requirement for many hidden variables (as in the toy example) is typical
for visual, auditory and many other types of data with very rich structure. Graphical
models for such data are often a central building block for tasks such as denoising (Elad
and Aharon, 2006; Lazaro-gredilla and Titsias, 2011), inpainting (Mairal et al., 2009b,a;
Lézaro-gredilla and Titsias, 2011), classification (Raina et al., 2007), or collaborative
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filtering (Lazaro-gredilla and Titsias, 2011). Typically, the performance in these tasks
improves with the number of latent variables that can be used (and which is usually limited
by computational demands).

1.2 Background

We first formulate a probabilistic model of the data. Denote the data set of size /N as

Y = {yW, ..., y™} where a single observed data point (e.g. an image of toys, in the
above example) is denoted y™ = (y1,...,yp), and the set of latent variables is denoted
S ={sW ... sM}withs™ = (s1,...,sp), where there are D observed variables (e.g.

pixels) and H latent variables (e.g. toys), respectively. We denote the prior distribution
over the latent variables as p(.5|6) and the likelihood of the data as p(Y'|S, 6). Using these
expressions the data distribution can then be modelled by a generative data model for the
data likelihood:

p(Y|©) = ZpY\S@ (5]0) (1.1)

with © denoting the parameters of the model. Equation (1.1) assumes discrete latent

variables, but in the case of continuous variables the sum is replaced by an integral:

p(Y|©) = [4p(Y|S,0)p(S|O). For ahierarchical model, the prior distribution p(.S | ©)
may be subdivided hierarchically into different sets of variables.

Considering a single data point, the posterior distribution over latent variables is defined
as follows:

p(s !@) ( |S )

Zp ™Mls’,0)

To find the optimal parameters ©, we must solve the following optimization problem:
given data set Y find maximum likelihood parameters ©*:

p(sly™, © (1.2)

O* = argmax p(Y | ©) (1.3)
e

Solving the optimization problem in Equation (1.3) requires marginalizing over all A
latent variables in s, as shown in the denominator of the posterior distribution in Equa-
tion (1.2). This step quickly becomes computationally intractable as the number of latent
variables increases.

Expectation Maximization (EM) 1s a standard procedure widely applied to learn the max-
imum likelihood model parameters given graphical model when hidden variables are
present (see e.g. (Dempster et al., 1977; Neal and Hinton, 1998)). EM is an algorithm
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that iteratively optimizes a lower bound of the data likelihood, called the free energy, by
inferring the posterior distribution over hidden variables given the current parameters (the
E-step), and then adjusting the parameters to maximize the likelihood of the data averaged
over this posterior (the M-step). This process can be formalized as follows:

Maximize objective function £(©) = log p(Y | ©) with respect to © by optimizing the
free energy J:

L(©) > F(©,9) = ¢(S|6) 1og% (1.4)
= (log p(Y, S5))qcs10) + H[q(5)] (1.5)

where ¢ is a distribution over the hidden variables used to obtain the lower bound on
the log likelihood £(©) and H|[q] is the entropy of ¢(S). For simplification we now
temporarily drop the index to the nth data point.

Using EM, iteratively optimize F (O, q):

E-Step: compute posterior distribution ¢, parameters fixed

ar%ﬁréz;x]:(@, q) — q(s|0©) := p(sly, ©) (1.6)
q(s

M-Step: estimate model parameters, ¢ fixed
argmax F (0, q) — © := argmax(log p(y,s))qs|o) (1.7)
e e

M-step is only concerned with the expected log likelihood as the entropy of ¢(s) does
not depend directly on ©. The free energy can be rewritten as F(0,q) = L(O) —
KL[q(s) || p(s|ly, ©) ], where the second term is the Kullback-Leibler divergence. In other
words, for fixed ©, F (0O, q) is bounded above by the log likelihood, which is only fulfilled
when KL[¢(s) || p(s|ly, ©) | = 0, or rather, when ¢(s) = p(s|y, ©). Thus, the E-step sim-
ply sets ¢(s) to be equal to the current computation of the posterior distribution p(s|y, ©).

The M-step updates typically depend only on a small number of expectations with respect
to the posterior distribution as given by

(9(8)) sy o) = > Pls|y™,©)g(s), (1.8)

S

where ¢(s) is usually an elementary function of the hidden variables, namely, the suf-
ficient statistics under p(s |y ™, ©). The sum is replaced by an integral for continuous
latents. Calculating the expectations (1.8) is the computationally demanding part of EM
optimization for any non-trivial generative model as the posterior distribution computed
in the E-step (1.6) can be very complex and high-dimensional. The exact computation
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of the expectations is therefore often intractable and many well-known algorithms (e.g.
Olshausen and Field, 1996; Lee et al., 2007) have to rely on approximations. Especially
when the number of latent states to consider is large (e.g. exponential in the number of
latent variables), computing the posterior distribution becomes intractable, rendering ap-
proximations unavoidable.

A wide variety of approximate inference methods exist, all with their own advantages
and disadvantages, and the area continues to be a hugely active field of research. We de-
scribe some of the more popular approaches. The Laplace approximation method makes
a Gaussian approximation to the posterior distribution (Laplace, 1774) (see e.g. (Mur-
phy, 2012) Section 8.4.1 for an illustration). This method is simple, efficient and can be
a reasonable approximation when sample sizes are large, since posteriors often become
more “Gaussian-like”, for reasons analogous to the central limit theorem. However, it
is not gauranteed to converge. The posterior can also be approximated with stochastic
methods such as Markov chain Monte Carlo methods (MCMC) (see (Neal, 1993) for a
review). MCMC methods draw samples from the posterior distribution and can be used to
e.g. compute the expected sufficient statistics under the posterior in Equaton (1.8). These
methods are guaranteed to converge to the true posterior distribution in the limit, even
when the posterior is high-dimensional and/or multimodal. However, many samples are
required to ensure accuracy, thus their ability to represent complex posterior distributions
is limited by available computational resources. Additionally, there is often high variance
in the estimated integrals/summations and it is sometimes difficult to assess convergence.
Another way to approximate the posterior distribution is by using variational approxi-
mations (see (Wainwright and Jordan, 2003) for a review) where the objective, based
directly on the form of the free-energy function (1.4), is to approximate ¢(s) such that
the KL-divergence between it and the true posterior, KL[¢(s) || p(s]y, ©) ], is minimized.
These methods are efficient and easy to compute but produce biased estimates. They often
use a factorial prior over the latent variables which results in a factored posterior distribu-
tion, however this is a generally unrealistic assumption and neglects correlations between
latents (explaining away). Instead, in this work we focus on an approximate inference
approach that can represent complex posterior distributions without ignoring correlations
between latent variables (i.e. can avoid the effects of explaining away), has the ability to
represent multiple mode in the posteriors, and is efficiently computable.

Expectation truncation (ET) is an approximate EM algorithm for accelerating inference
and learning in graphical models with many latent variables (Liicke and Eggert, 2010).
Its basic idea is to restrict the inference performed during the E-step to an “interesting”
subset of states of the latent variables, chosen per data point according to a selection
function. This subspace reduction can lead to a significant decrease in computational
demand with very little loss of accuracy (compared with the full model). This approach is
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inherently suited for problems with sparse latent variables as it narrows in on the areas of
the posterior where the variables in the ‘restricted set’ have the greatest probability mass.
To provide an intuition: For the toy example introduced earlier, we could for instance
first analyze the colors contained in a given image. If the image did not contain the
color “red", we could already assume red toys or partly red toys to be absent. Only in
a second step would we then consider the combinatorics of the remaining toys. More
features and more refined features would allow for a reduction to still smaller sets of
toys until the combinatorics of these selected toys becomes computationally tractable.
The selection function of ET mathematically models the process of selecting the relevant
hidden variables (the relevant toys); while truncated posterior distributions then models
their remaining combinatorics (see further below). Using ET, the posterior distribution in
Equation (1.2) can then be approximated by a posterior distribution with support truncated
to the preselected latent variables:

p(sly™, )

s,y™|0)I(s e K,
e 0y - HEYIO) I € )

Spis’ymie)

s’'en

(1.9)

where KC,, contains the latent states of the relevant variables for data point y™, and
I(s € K,) = 1ifs € K, and 0 otherwise. In other words, Equation (1.9) is pro-
portional to Equation (1.2) if s € K, (and zero otherwise). The set /C,, contains only
states for which s;, = 0 for all h that are not selected, i.e. all states where s;, = 1 for
non-selected h are assigned zero probability. This means that there are fewer terms in
the denominator of the truncated posterior in Equation (1.9) compared with that of full
posterior in Equation (1.2), which affects the overall scaling of the terms. The truncated
posterior (1.9) still remains proportional to the full posterior (1.2) for the selected terms
s € K, however. The sum over /C,, is much more efficient than the sum for the full
posterior, since it need only be computed over the reduced set of latent variable states
deemed relevant: the state configurations of the irrelevant variables are fixed to be zero.
The variable selection parameter is selected based on the compute resources available:
i.e. as large as resources allow in order to be closer to true EM, although empirically it
has been shown that much smaller values suffice with very little loss of accuracy (see e.g.
Sheikh et al., 2014, Appendix B on complexity-accuracy trade-offs).

The approximation of the full posterior distribution (1.9) can be used to compute effi-
ciently the expectations needed in the M-step (1.7):

> serc, P(s,y ™ [©) g(s)

, (1.10)
Zs’elcn p(s 7y(n) | @>

<9(S)>p(s|y<n),e) ~ <9(S)>q<n)(s;®) -
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Equation (1.10) represents a reduction in required computational resources as it involves
only summations (or integrations) over the smaller state space XC,,. The bottleneck here
is that the set K, needs to be selected prior to the computation of expectations, and the
final computational acceleration relies on such selections being efficiently computable
and well-suited to the model under consideration.

A selection function S(y,©) is used to identify a subset of salient variables from H,
denoted by H' where H' < H. This is in turn used to define a subset, denoted /C,,, of the
possible state configurations of the space per data point y. State configurations not in this
space (of variables deemed to be non-relevant) are fixed to 0 (assigned zero probability
mass). K,, can be formally defined as follows:

K, ={s|forallh ¢ T: s, =0}, (1.11)

where Z contains the H’ indices h with the highest values of a selection function Sy, (y, ©).
Appropriate selection functions Sy, (y, ©), for e.g. Sparse Coding models, can be found by
deriving efficiently computable upper-bounds for probabilities p(s;, = 1|y ™, 0) (Puer-
tas et al., 2010) or via deterministic relations s = f(y, ©) in the limit of no data noise
(Henniges et al., 2010). Usually however, the selection functions are derived by hand
for each individual model for which ET is using them, requiring expertise in the problem
domain. We can expect the approximation to be accurate only if restricting the combi-
natorics (e.g. combinations of a restricted number of toys) does not miss large parts of
posterior mass. The larger C,, the less precise the selection has to be, but with the obvi-
ous trade-off of necessary compute resources. For /C,, equal to the entire state space, no
selection is required and the approximations (1.9) and (1.10) fall back to the case of exact
inference.

1.3 Roadmap

In Chapter 2, we introduce an approach that combines latent variable preselection (via
ET) with MCMC sampling methods for the acceleration of inference and learning with
EM. The idea is to combine the strengths of each approach in order to represent complex
posterior distributions while also reducing the necessary computations to do so. Incor-
porating a sampling method with ET allows for the representation of multiple modes
and arbitrary correlations within the posterior regions that have already been preselected
to the reduced state space with highest probability mass. Generally a huge amount of
samples is necessary to adequately represent complex distributions — they may be very
correlated (because of explaining away effects), multimodal (multiple possible interpre-
tations), and very high-dimensional. As our method only draws samples from the more
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compact posterior distribution truncated to the ‘interesting’ variables instead of the full
complex distribution, this main drawback of sampling methods is minimized. We refer to
our combined approach as Select and Sample.

Select and Sample can be interpreted as neurally plausible. Inference and learning in neu-
ral circuits can be regarded as the task of inferring the true hidden causes of a stimulus.
An example is inferring the objects in a visual scene based on the image projected on the
retina. Latent variable preselection connects sampling to very influential models of neural
processing that emphasize feed-forward processing ((Rosenblatt, 1958; Riesenhuber and
Poggio, 1999) and many more), and is consistent with the popular view of neural process-
ing and learning as an interplay between feed-forward and recurrent stages of processing
(Yuille and Kersten, 2006; Hinton et al., 1995; Korner et al., 1999; Lee and Mumford,
2003a). Our combined approach encompasses these views of processing in neural cir-
cuits naturally by interpreting feed-forward selection and sampling as approximations to
exact inference in a probabilistic framework for perception.

We demonstrate the effectiveness and efficiency of the Select and Sample approach on a
vanilla Sparse Coding model optimized with EM. In numerical experiments on artificial
data and image patches, we compare the performance of Sparse Coding with posterior
distributions in the E-step computed using the following: the full posterior for exact EM
(tractable with simpler data), latent variable preselection alone, a Gibbs sampling method
(details in Chapter 2), and the combination of the two (Select and Sample). Our approach
performs well in applications exceeding a thousand observed and a thousand hidden vari-
ables.

In Chapter 3, we apply the Select and Sample approach introduced in Chapter 2 to a novel
and complex Sparse Coding model. Sparse Coding is a popular approach to model nat-
ural images but has faced two main challenges: modelling low-level image components
(such as edge-like structures and their occlusions) and modelling varying pixel intensities.
Traditionally, images are modeled as a sparse linear superposition of dictionary elements,
where the probabilistic view of this problem is that the coefficients follow a Laplace or
Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab
prior and nonlinear combination of components. With the prior, our model can easily
represent exact zeros for e.g. the absence of an image component, such as an edge, and
a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max
combination rule), the idea is to target occlusions; dictionary elements correspond to im-
age components that can occlude each other. There are major consequences of the model
assumptions made by both (non)linear approaches, thus an important goal of this Chapter
is to isolate and highlight differences between them. Furthermore, parameter optimization
is analytically and computationally intractable in our model. Thus another core contribu-
tion of this work is the development of an exact Gibbs sampler in order to adequately
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sample the complex posterior distribution resulting from the nonlinearity in the data like-
lihood. This approach allows for efficient inference, but by first preselecting the most
"Interesting" latent variables (as in Select and Sample), we can speed up the inference
process as well as handle higher dimensional data.

Results on natural and artificial occlusion-rich data with controlled forms of sparse struc-
ture show that our model can extract a sparse set of edge-like components that closely
match the generating process, which we refer to as interpretable components. Further-
more, the sparseness of the solution closely follows the ground-truth number of compo-
nents/edges in the images. The linear model did not learn such edge-like components with
any level of sparsity. This suggests that our model can adaptively well-approximate and
characterize the meaningful generation process. Finally, experiments on natural image
patches, show neural consistency of our model in two ways: its predictions are consistent
with (1) in vivo neural recordings and with (2) the model’s prior beliefs.

In Chapter 4, we generalize the preselection optimization method (introduced in Chap-
ter 2 and applied in Chapter 3) in a model-independent nonparametric black-box way
for further acceleration of EM. The definition of appropriate selection functions for basic
graphical models (such as the nursery floor example discussed above) is already non-
trivial. For models incorporating more detailed data properties, the definition of selec-
tions functions becomes still more demanding. For visual data, e.g. models that also
capture mutual object occlusions (Henniges et al., 2014) and/or the object position (Dai
and Liicke, 2014), the design of suitable selection functions is extremely challenging: it
requires both expert knowledge on the problem domain and considerable computational
resources to implement (indeed, the design of such functions for particular problems has
been a major contribution in previous work on the topic).

We propose a generalization of the ET approach, where we completely avoid the chal-
lenge of problem-specific selection function design. Instead, we learn selection functions
adaptively and nonparametrically from the data, while learning the model parameters si-
multaneously using EM. We emphasize that the selection function is used only to “guide"
the underlying base inference algorithm to regions of high posterior probability, but is not
itself used as an approximation to the posterior distribution. As such, the learned function
does not have to be a completely accurate indication of latent variable predictivity as long
as the relative importance of the latent states likely to contribute posterior probability
mass is preserved. We use Gaussian process regression (Rasmussen and Williams, 2005)
to learn the selection function — by regressing the expected values of the latent variables
onto the observed data — though other regression techniques could also be applied. The
main advantage of GPs is that they do not need to be re-trained when only the output
changes, as long as the inputs remain the same. This makes adaptive learning of a chang-
ing target function (given fixed inputs) computationally trivial (this will become clear in
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Section 4.4). We term this part of our approach GP-select. Our nonparametric general-
ization of ET may be applied as a black-box meta algorithm for accelerating inference in
generative graphical models, with no expert knowledge required.

Our approach is the first to make ET a general purpose algorithm for discrete latent vari-
ables,whereas previously, ET had to be modified by hand for each latent variable model
addressed. For instance, we will show that preselection is crucial for efficient inference
in complex models. Although ET has already been successful in some models, this work
shows that more complex models will crucially depend on an improved selection step and
focuses on automating this step.

For empirical evaluation, we have applied GP-select in a number of experimental settings.
First, we considered the case of Sparse Coding models (binary Sparse Coding, spike-and-
slab, nonlinear spike-and-slab), where the relationship between the observed and latent
variables is known to be complex and nonlinear.! We show that GP-select can produce
results with equal performance to the respective manually-derived selection functions. In-
terestingly, we find it can be essential to use nonlinear GP regression in the spike-and-slab
case, and that simple linear regression is not sufficiently flexible in modelling the posterior
shape. Second, we illustrate GP-select on a simple Gaussian mixture model, where we
can provide intuition and explicitly visualize the form of the learned regression function.
We find that even for a simple model, it can be be essential to learn a nonlinear map-
ping. Finally, we present results for a recent hierarchical model for translation invariant
occlusive components analysis (Dai and Liicke, 2014). The performance of our inference
algorithm matches that of the complex hand-engineered selection function of the previ-
ous work, while being straightforward to implement and having a far lower computational
cost.

In Chapter 5 we summarize and review the overall conclusions and contributions of this
body of work and discuss potential future directions.

1.4 Summary of Main Chapters

The Roadmap provided a comprehensive outline of the thesis in which the three chapter
containing the main content were introduced. A condensed summary of these chapters is
as follows:

'Note that even when linear relations exist between the latents and outputs, a nonlinear regression may
still be necessary in finding relevant variables, as a result of explaining away.
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* Chapter 2 (Efficient Inference with ‘Select and Sample’): In this chapter we
introduce an inference method, ‘Select and Sample’, that combines latent variable
preselection with Markov Chain Monte Carlo (MCMC) sampling methods for the
acceleration of EM. We demonstrate the effectiveness of our approach by consid-
ering a simple Sparse Coding model parameterized with a binary prior distribution
over the latent variables and a Gaussian distribution over the observed variables.

* Chapter 3 (Nonlinear Spike-and-Slab Sparse Coding): In this chapter we in-
troduce a novel Sparse Coding model with a Spike-and-Slab prior distribution and
a nonlinearity in the data likelihood. This leads to a highly multimodal posterior
distribution and computational/analytical intractabilities. We apply the Select and
Sample approach of Chapter 2 to this model, which due to the complex posterior,
requires the development of new MCMC method.

* Chapter 4 (Generalizing Subspace Preselection with GP-select): In this chapter
we introduce a nonparametric generalization of Select and Sample. In the previous
chapters, the ’selection’ step of the method used a manually-designed function to
learn a mapping from the observed data to the current EM state for each problem
setting. Instead here we use Gaussian process regression to learn such a function
automatically and with increased efficiency. We demonstrate the effectiveness and
efficiency of this approach on a wide variety of inference problems, including a
hierarchical model for object localization with occlusion.

1.5 Scientific Contributions

The work in this thesis makes several contributions. The peer-reviewed articles corre-
sponding to these contributions are cited at the beginning of the relevant Chapter. The
following are the main contributions:

* An approach for efficient approximate inference in generative graphical mod-
els (Select and Sample): We propose the fundamental approximate inference ap-
proach for accelerated inference and learning, which was built upon and applied
in the subsequent Chapters. This approach combines latent variable preselection
with Markov Chain Monte Carlo (MCMC) sampling methods for the acceleration
of inference and learning with EM. The preselection of the relevant latent variables
is done with a selection function. This allows us to capture the strengths of each ap-
proach in representing complex posterior distributions and simultaneously reduce
computational costs of inference with little to no loss of accuracy.

* A nonlinear probabilistic model of occlusions in images (SSMCA): We intro-
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duce a complex and novel Sparse Coding model designed to model low-level image
components (such as edge-like structures and their occlusions). The model used a
complex prior distribution (Spike-and-slab) — to model the presence/absence of e.g.
an edge as well as its pixel intensity — and has a nonlinearity in the data likelihood
(the nonlinear max combination rule) to target occlusions, i.e. dictionary elements
correspond to image components that can occlude each other. We apply Select and
Sample to this complex Sparse Coding model.

An exact MCMC method for inference in the proposed nonlinear Sparse Cod-
ing model: In order to do inference in the SSMCA model, we develop an exact
Gibbs sampler constructed exactly after the nonlinearity in the data likelihood of
the SSMCA model. The nonlinearity in the data likelihood leads to a highly multi-
modal complex posterior distribution, thus in order to adequately sample this distri-
bution we develop an exact Gibbs sampler based on the exact form of the posterior
distribution. This allows for the successful application of Select and Sample to a
complex Sparse Coding model. Furthermore, our results show that SSMCA can
model the generating process of images with occlusions, including extracting indi-
vidual edge-like structures that occlude each other, and makes predictions that are
neurally consistent.

The generalization of the variable preselection process (GP-select): We propose
a model-independent nonparametric black-box way to define a suitable selection
function efficiently. Namely, we learned the selection function entirely from the
observed data and current EM state using Gaussian process regression. Empirical
experiments show equivalent performance between our inference algorithm (using
GP-select to preselect variable) and algorithms of previous work (using a complex
hand-engineered selection function for preselection). At the same time, GP-select
is straightforward to implement and has a far lower computational cost.
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Chapter 2

Select and Sample - A Model of
Efficient Neural Inference and Learning

In this Chapter we introduce a novel inference scheme combining latent variable prese-
lection and sampling for the acceleration of EM.

The work presented in this Chapter can be found in the following publications: Shelton
et al. (2011a,b).

2.1 Introduction

An increasing number of experimental studies indicate that perception encodes a posterior
probability distribution over possible causes of sensory stimuli, which is used to act close
to optimally in the environment. One outstanding difficulty with this hypothesis is that the
exact posterior will in general be too complex to be represented directly, and thus neurons
will have to represent an approximation of this distribution. Two influential proposals
for how neural populations could achieve an efficient posterior representation are 1) that
neural activity represents samples of the underlying distribution, or 2) that they repre-
sent a parametric representation of a variational approximation of the posterior. In this
work, we propose a method for accelerated inference in EM that can account for both of
these suggested neural approaches and their respective advantages. Namely, our approach
combines the strengths of both sampling methods and variational approximations: it can
represent multiple modes and arbitrary correlations and reduce the represented space to
regions of high probability mass, respectively. Neurally, the combined method can be
interpreted as a feed-forward preselection of the relevant state space, followed by a neural
dynamics implementing Markov Chain Monte Carlo (MCMC) to approximate the pos-

15



16 CHAPTER 2. SELECT AND SAMPLE

terior over the relevant states. We demonstrate the effectiveness and efficiency of this
approach on a sparse coding model. In numerical experiments on artificial data and im-
age patches, we compare the performance of the algorithms to the performance of exact
EM, variational state space selection alone, MCMC alone, and the combined Select and
Sample approach. For sparse coding we find that it enables applications easily exceeding
a thousand observed and a thousand hidden dimensions.

2.1.1 Background

According to the statistical approach to perception which is becoming increasingly popu-
lar, our brain would represent not only the most likely interpretation of a stimulus, but also
the uncertainty associated with it. Ideally, the brain would represent the full posterior dis-
tribution over all possible interpretations of the stimulus, which is statistically optimal for
inference and learning (Dayan and Abbott, 2001; Rao et al., 2002; Fiser et al., 2010). An
increasing number of psychophysical and electrophysiological studies (Ernst and Banks,
2002; Weiss et al., 2002; Kording and Wolpert, 2004; Beck et al., 2008; Trommershéuser
et al., 2008; Berkes et al., 2011a) support this hypothesis.

One approach researchers have taken to explore processing in neural circuits is to as-
sume that neuronal activity represent the parameters of a variational approximation of
the real posterior (Ma et al., 2006; Turner et al., 2011). While this approach allows the
instantaneous representation of an approximate version of the full posterior, the number
of neurons still explodes with the number of variables. For example, approximating the
posterior with a Gaussian distribution requires N? parameters to represent the covariance
matrix over N variables. Another approach is to identify neurons as variables, and in-
terpret neural activity as samples from their posterior (Lee and Mumford, 2003a; Hoyer,
2003; Fiser et al., 2010). This interpretation is consistent with a range of experimen-
tal observations, including neural variability (which would result from the uncertainty
in the posterior) and spontaneous activity (corresponding to samples from the prior in
the absence of a stimulus (Fiser et al., 2010; Berkes et al., 2011a). The advantage of
a sampling-based representation is that the number of neurons scales linearly with the
number of variables, while retaining the ability to represent arbitrarily complex posteriors
given enough samples. However, an important consideration with this approach is the
amount of time needed to collect a sufficient number of samples in order to form a com-
plete enough representation of the posterior. modelling studies have shown that a small
number of samples are sufficient to perform well on low-dimensional tasks (intuitively,
this is because taking a low-dimensional marginal of the posterior accumulates samples
over all dimensions) (Vul et al., 2009; Berkes et al., 2011b). However, most sensory data
is inherently very high-dimensional. For instance, to faithfully represent visual scenes
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containing potentially many objects and object parts, one requires a high-dimensional la-
tent space to represent the high number of potential causes. For high dimensionalities,
sampling approaches usually suffer from long burn-in times and require in general a high
number of samples to represent non-trivial posteriors. With variable preselection, Select
and Sample efficiently minimizes the drawbacks of sampling methods and simultaneously
takes advantage of their ability to represent complex distributions.

2.2 A Select and Sample Approach to Approximate
Inference

To illustrate Select and Sample, we will consider the task of inferring the true latent
variables in a visual stimulus, e.g. the objects in a visual scene based on the image pro-
jected on the retina. We will refer to the sensory stimulus (the image) as a data point,
y = (y1,-..,yp), and we will refer to the hidden causes (the objects) as s = (s1,...,5g)
with s;, denoting the hidden variable or hidden unit h. The data distribution can then be
modelled by a generative data model: p(y |©) = > _p(y|s,©)p(s|©O) with © denot-
ing the parameters of the model. If we assume that the data distribution can be optimally
modelled by the generative distribution for optimal parameter ©*, then the posterior prob-
ability p(s |y, ©*) represents optimal inference given a data point y. The parameters O*
given a set of N data points Y = {y;,...,yn} are given by the maximum likelihood
parameters ©* = argmaxg{p(y | ©)}.

We use EM to to find the maximum likelihood solution of the parameters. As described
in Chapter 1.2, EM is an iterative algorithm to compute the maximum likelihood estimate
of the model parameters of a given graphical model (see e.g. (Dempster et al., 1977; Neal
and Hinton, 1998)). EM algorithm iterates between the E-step (1.6) and M-step (1.7)
where the posterior distribution is optimized, followed by the the optimization model
parameters, respectively. The parameter updates in the M-step usually depend just on a
small number of expectations of the posterior, ((S)) s |y m.0) = s P(S|Y ™. 0)g(s).
Although ¢(s) is usually an elementary function of the latent variables s, the expectations
are the computationally demanding part of EM optimization and must be approximated
with some method. The EM iterations can be associated to neural processing by relat-
ing the E-step to the assumption that neural activity represents the posterior over hidden
variables, and relating the M-step equations to long-term changes in synaptic weights due
to synaptic plasticity. Here we will combine two approximations of the expectations in
EM and show that these approximations are analogous to prominent models of neural
processing.
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2.2.1 Selection

Feed-forward processing has frequently been discussed as an important component of
neural processing (Rosenblatt, 1958; LeCun et al., 1989; Riesenhuber and Poggio, 1999,
2002). One perspective on this early componenet of neural activity is as a preselection of
candidate units (variables, hypotheses, etc.) for a given sensory stimulus ((Korner et al.,
1999; Lee and Mumford, 2003b; Yuille and Kersten, 2006) and many more), with the
goal of reducing the computational demand of an otherwise too complex computation. In
the context of probabilistic approaches, we can emulate neural feed-forward processing
with preselection using Expectation Truncation (ET; described in 1.2). After preselec-
tion of relevant variables, the posterior distribution can be approximated by a truncated
distribution over a reduced set of latent states:

p(s™y™, )
S (s ™, yme)

S /(n) G’Cn

~ g, (s";0) = @2.1)

where /C,, contains the latent states of the relevant variables for data point y("), and (s €
K.) = 1if s € K,, and 0 otherwise. Since for many applications the posterior mass is
concentrated in small volumes of the state space, the approximation quality can stay high
even for relatively small sets /C,,. Indeed, this property is observed to hold for many types
of data in the auditory, visual or general pattern recognition domains. The expectations in
the M-step can be computed using the truncated posterior distribution:

> serc, P(s,y ™ 10) g(s)
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This approximation allows the expectations to be computed over the smaller state space
K., leading to a reduction in computational demands. As discussed in the Introduction
Chapter 1.2, the set /C,, needs to be carefully and efficiently selected prior to the computa-
tion of expectations in the E-step for significant acceleration of EM. A selection function
Si(y, ©) preselects latent variables s, that are most likely to have contributed to a data
point y ™. The reduced set of preselected latent variable states /C,, is defined as follows:
K, ={s|forallh € Z: s, =0}, where Z contains the H' < H indices with the highest
values of a selection function S;,(y, ©) (compare Figure 2.1).
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Figure 2.1: A Simplified illustration of the posterior mass and the respective regions used by
each approximation to compute the expectations (g(s)). B Graphical model showing full connec-
tions Wy, between the data point y("™) and latent variables/units s = (s1,...,8m) and how H'
variables are selected from H to form a given state set K, and Wy, is affected accordingly. C
lllustrates how sampling draws samples from this reduced set for the Select and Sample approach
(with e.g. the right-most posterior mass in A).

2.2.2 Sampling

An alternative way to approximate the expectations in Equation 2.2 is by sampling from
the posterior distribution, and using the samples to compute the average:

M
(9(8))pisy m.0) & 15 D 9(s"™) with st ~ p(s | y™, ©), (2.3)
m=1

where M denotes the total number of samples drawn for a data point y ™. The chal-
lenging aspect of this approach is to efficiently draw samples from the posterior. In large
dimensional sample space, this is mostly done by Markov Chain Monte Carlo (MCMC).
This class of methods draws samples from the posterior distribution such that each subse-
quent sample is drawn relative to the current state, and the resulting sequence of samples
form a Markov chain. A new sample is accepted with a probability of max(1, I%).
In the limit of a large number of samples, MCMC methods are theoretically able to rep-
resent any probability distribution. However, the number of samples required in large
dimensional space can be very large (Figure 2.1A, sampling). See (Neal, 1993) for an

extensive review of MCMC methods for probabilistic inference.
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2.2.3 Select and Sample

While preselection and sampling seem to be very different in nature, their formulations
as approximations to expectations (2.2) allow for a straight-forward combination of both
approaches: Given a data point, y(™, we first approximate the expectation (2.2) using the
variational distribution ¢(™(s; ©) as defined by preselection (2.2). Second, we approxi-
mate the expectations with respect to ¢(™(s; ©) using sampling. The combined approach
is thus given by:

M
<g(s)>p(s\y(”),@) ~ <g(s)>q(”)(s;@) ~ %Z.g(S(m)) with S(m) Nq(”)(s; @> (24)
m=1

where s() to s™) denote samples from the truncated distribution ¢™. Instead of drawing
from a distribution over the entire state space, approximation (2.4) requires only samples
from a potentially very small subspace K,, (Figure 2.1). In the subspace C,,, most of the
original probability mass is concentrated in a smaller volume, and thus we expect MCMC
algorithms to perform more efficiently, as they need to explore a smaller volume, short-
ening burn-in times, and reducing the number of samples needed to trace the distribution.
Compared to selection alone, the Select and Sample approach will represent an increase
in efficiency as soon as the number of samples required for a good approximation is less
then the number of states in XC,,. In the following, we will systematically investigate the
computational efficiency of the Select and Sample approach in comparison with selection
and sampling alone using concrete examples of generative models with real-world scales.

2.3 Sparse Coding: An Example Application

To explore the efficiency and performance properties of the Select and Sample approach
as well as to study its biological plausibility, we apply it to a sparse coding model of
images. The choice of a sparse coding model has numerous advantages. First, it is a
non-trivial model that has been extremely well-studied in machine learning research, and
for which efficient algorithms exist (e.g. (Lee et al., 2007; Mairal et al., 2010)). Second,
it has become a standard (albeit somewhat simplistic) model of the organization of recep-
tive fields in primary visual cortex (Olshausen and Field, 1996; van Hateren and van der
Schaaf, 1998; Ringach, 2002). Here we consider a discrete variant of this model known
as Binary Sparse Coding (BSC; (Henniges et al., 2010; Liicke and Eggert, 2010), also
compare (Haft et al., 2004)), which has binary hidden variables but otherwise the same
features as standard sparse coding versions. The generative model for BSC is expressed
by
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H
p(s|m) = H wsh (1 — ﬁ)l_sh , p(yls,W,o) = N(y; Ws, 1), (2.5)
h=1

where W € RP*H denotes the basis vectors between s and y, and 7 parameterizes the
sparsity of the Bernoulli prior p(s|7) on s, which we denote B(s; 7).

The M-step updates of the BSC learning algorithm (see e.g. (Liicke and Eggert, 2010))

are given by:
N N

wrer = (3oy™ (s)go ) (2o (s5T),m) (2:6)
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where |X| = + th.

The only expectations needed for the M-step are thus (s) 4m and <ssT>q(n).
We will compare inference and learning using different methods:

BSC®#t, An EM algorithm without approximations is obtained if we use the exact pos-
terior for the expectations: ¢(™ = p(s|y ™, 0). We will refer to this exact algorithm as
BSC ", While directly computable, the expectations for BSC ™" require sums over
the entire state space, i.e. over 27 terms. For large numbers of latent dimensions BSC ®***
is thus intractable.

BSCseect, An algorithm that more efficiently scales with the number of hidden dimensions
is obtained by applying preselection. For the BSC model we use ¢(™ as given in (2.2) and
K, = {s|(forallh ¢ Z: s, =0)or >, s, = 1}. Note that in addition to states as in
(1.11) we include all states with one non-zero unit (all singletons). Including them avoids
EM iterations in the initial phases of learning that leave some basis functions unmodified
(see (Liicke and Eggert, 2010)). As selection function S, (y (")) to define K,, we use:

Wiy
Suly ™) = Y~ with [[Whll, = /S22, (Wan)?2. 2.8)
[[Wall,

A large value of S, (y ™) strongly indicates that y ™ contains the basis function W,
as a component (see Figure 2.1C). Note that (2.8) can be related to a deterministic ICA-
like selection of a hidden state s(™ in the limit case of no noise (compare (Liicke and
Eggert, 2010)). Further restrictions of the state space are possible but require modified
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M-step equations (see (Liicke and Eggert, 2010; Henniges et al., 2010)), which will not
be considered here. Selection functions for more complex models will be thoroughly
addressed in Chapter 4.

BSCs™Ple Ap alternative non-deterministic (stochastic) approach can be derived us-
ing Gibbs sampling. Gibbs sampling is an MCMC algorithm which systematically ex-
plores the sample space, considering each dimension individually, conditioning the ac-
ceptance of a new sample based on values of the remaining samples. In other words,
the transition probability from the current sample to a new candidate sample is given by
p(s‘;fwlsf;’l"em). In our case of a binary sample space, this equates to selecting one random
axis h € {1,..., H} and toggling its bit value (thereby changing the binary state in that
dimension), leaving the remaining axes unchanged. Specifically, the posterior probability

computed for each candidate sample is expressed by:

p(sn = 1,8\, ¥)"
p(sh = Oa S\ha y)/j +p($h = 17 S\h7 y)ﬁ7

p(sp =1|s\n,y) = (2.9)
where [ is used to smooth out the posterior distribution. To ensure an appropriate mixing
behavior over a wide range of ¢ (note that o is a model parameter that changes with learn-
ing), we define 5 = %, where 7' is an annealing temperature parameter that is set manu-
ally and is selected such that sufficient mixing of the MCMC chains is achieved. A chain
is referred to as well mixed when the sampler has adequately explored the state space and
the samples can be considered to have been drawn from the desired target distribution (i.e.
the proposal distribution converges to the stationary distribution), and annealing is often
used to speed up mixing times (see e.g. (Neal, 1993)). The samples drawn by applying
the described procedure can then be used to approximate the expectations of the sufficient
statistics in the parameter Equations (2.6) and (2.7) using Equation (2.3).

BSC**. The EM learning algorithm given by combining selection and sampling is ob-
tained by applying (2.4). First note that inserting the BSC generative model into (2.1)
results in:

N(y; Ws,o%I) B, (s;7) I(s € K,,)
Z N(y;Ws' 0®I) B, (s'; )

s’'ey

¢"(s; 0) =

(2.10)

where By, (s;7) = [[,c7 7" (1 — m)'~*. The remainder of the Bernoulli distribution
cancels out. If we define s to be the binary vector containing all selected variables of
s, and if W € RP*H' contains all basis functions of the selected units, we observe that
the distribution is equal to the posterior with respect to a BSC generative model with H’
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instead of H hidden variables:
_ N(y; Ws,0% ) B(8;7)
> N(y; W&, 0%In) B 7)

p(sly,0) = p(8]y,©)

Instead of drawing samples from ¢ (s; ©) we can thus draw samples from the exact
posterior with respect to the BSC generative model with H’ dimensions. The sampling
procedure for BSC**™P!°can thus be applied simply by ignoring the non-selected dimen-
sions and their associated parameters. For different data points different latent dimensions
will be selected such that averaging over data points can update all model parameters. For
selection we again use selection functions (2.8) and again define K,, similar to (1.11):

K,={s|forallh ¢Z: s, =0}, (2.11)

where Z contains the H’-2 indices h with the highest values of a selection function
Si(y, ©) and two randomly selected dimensions (drawn from a uniform distribution over
all non-selected dimensions). The two randomly selected dimensions fulfill the same
purpose as the inclusion of singleton states for BSC ", This prevents the possible prop-
agation of errors from ¢, continuously assigning small probabilities to a variable s, in
early EM iterations. Preselection and Gibbs sampling on the selected dimensions define
an approximation to the required expectations (2.2) and result in an EM algorithm referred
to as BSC.

Complexity. Collecting the number of operations necessary to compute the expectation
values for all four BSC cases, we arrive at

OWNS( D+ L+ L))
p(s,y) (s) (ssT)

(2.12)

where S denotes the number of hidden states that contribute to the calculation of the ex-
pectations. For the approaches with preselection (BSC*°*, BSC***), all the calculations
of the expectations can be performed on the reduced latent space; therefore the H is re-
placed by H'. For BSC “*“‘this number scales exponentially in H: St = 28 and in in
the BSC*!*case, it scales exponentially in the number of preselected hidden variables:
Geelect — 9H" However, for the sampling based approaches (BSC **™P'°and BSC***), the
number S directly corresponds to the number of samples to be evaluated and is obtained
empirically. As we will show later, S = 200 x H’ is a reasonable choice for the interval
of H' that we investigate in this work (1 < H' < 40).
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Figure 2.2: Experiments using artificial bars data generated with H = 12 bars (hidden variables)
and D = 6 X 6 pixels (observed variables). Dotted line indicates the ground-truth log likelihood
value. A Random selection of the N = 2,000 training data points'y (") B Learned basis functions
Wan after an successful training run C Development of the log likelihood over a period of 50 EM
steps for all 4 investigated algorithms where different color plots are different runs of the same
algorithm.

2.4 Experiments

We compare the Select and Sample approach with selection and sampling applied indi-
vidually on different data sets. In all experiments evaluating the two algorithms that use
sampling, we draw 20 independent chains that are initialized at random states in order to
increase the mixing of the samples. Also, of the samples drawn per chain, % were used to
as burn-in samples, and % were retained samples.

2.4.1 Artificial Data

Before we apply the Select and Sample approach to large scale learning on image patches,
we investigate its convergence properties on artificial data sets where ground-truth is avail-
able. As the following experiments were run on a small scale problem, all four algorithms
(BSC®act BSCselect, BSCs™Pleand BSC ™) can be applied and compared. Further-
more, for all the experiments we computed the exact likelihood for each EM step.

Data for these experiments consisted of images generated with H = 12 ground-truth
basis functions W5' in the form of horizontal and vertical bars on a D = 6 x 6 = 36
pixel grid. Each bar was randomly assigned to be either positive (W5 € {0.0,10.0})
or negative (Wg,i, € {-10.0,0.0}). N = 2,000 data points y (™ were generated by
linear combining these basis functions (see e.g. (Hoyer, 2002)). Using a sparseness value
of gy = % resulted in, on average, two active bars per data point. According to the
model, we added Gaussian noise (0, = 2.0) to the data (Figure 2.2 A). We applied all
algorithms to the same data set and monitored the exact likelihood while these algorithms
converged over a period of 50 EM steps (Figure 2.2 C). Although the calculation of the
exact likelihood requires O(N 2% (D+ H)) operations, this is still feasible for such a small
scale problem. When running models using preselection (BSC***“*and BSC*"®), we set
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Figure 2.3: Experiments on D = 26 x 26 image patches: A A set of 10 randomly chosen image
patches after DoG preprocessing. B A selection of the learned basis functions for H = 800, H' =
20 and number of samples set to 200 x H'. See the Supplementary Material 2.6 for the full set
of basis functions. C The final approximate log likelihood then running the BSC®tSfor various
number of samples drawn per data point. D Assuming H = 800 and H' = 20, the number of
hidden states to be evaluated are shown.

H' to 6, effectively halving the number of hidden variables participating in the calculation
of the expectations. For BSC Pl we drew S%™Ple = 200 x H = 2400 samples from the
posterior p(s | y ™) of each data point. For BSC®", we drew S5 = 200 x H' = 1,200
samples from the posterior of each data point. To ensure an appropriate mixing behavior,
we furthermore set the annealing temperature to 7' = 50. In all these experiments we
initialized the basis functions to the data mean plus Gaussian noise, the prior probability to
Tinit = % and the data noise to the variance of the data. All algorithms recover the correct
set of bases functions in > 50% of the trials, and the sparseness prior 7 and the data
noise o with high accuracy. Comparing the computational costs of algorithms shows the
benefits of preselection already for this small scale problem: While BSC“*“‘calculates
the expectations using the full set of 2/ = 4096 hidden states, BSC***only considers
2" + (H — H') = 70 states. The pure sampling based approaches performs 2,400
evaluations while BSC*"*requires 1, 200 evaluations.

2.4.2 Natural Image Patches

To demonstrate the applicability of the Select and Sample approach to larger scale prob-
lems, we tested our approach natural image patches. We extracted N = 40, 000 patches
of size D = 26 x 26 = 676 pixels from the van Hateren image database (van Hateren and
van der Schaaf, 1998) !, and preprocessed them using a Difference of Gaussians (DoG)
filter, which approximates the sensitivity of center-on and center-off neurons found in the
early stages of the mammalian visual processing. Filter parameters where chosen as in
(Liicke, 2009; Puertas et al., 2010). The annealing temperature was set to 7' = 20. In all

'We restricted the set of images to 900 images without man-made structures (see Figure 2.3A). The
brightest 2% of the pixels were clamped to the maximal value of the remaining 98% (influences of light-
reflections were reduced this way)
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following simulations, we used initialization procedure described earlier and ran 100 EM
iterations to ensure proper convergence.

We first ran a series of experiments in order to investigate the effect of the number of
samples used on the approximated log likelihood for values of H’ ranging between 12 and
36, and setting H = 800. We observe with BSC*"*that 200 samples per hidden dimension
(total samples = 200 x H') are sufficient in that the final value of the likelihood after 100
EM steps begins to saturate. Particularly, increasing the number of samples does not
increase the likelihood by more than 1% In Figure 2.3C we show the curve for H' = 20,
but we obseverd the same trend for all other values of H’. Furthermore<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>