
Large-scale Approximate EM-style
Learning and Inference in Generative
Graphical Models for Sparse Coding

vorgelegt von M.Sc. Informatik
Jacquelyn Ann Shelton

geboren in Flint, Michigan, USA

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender (Chair): Prof. Dr. Manfred Opper (TU Berlin)
Gutachter (Reviewer): Prof. Dr. Matthew B. Blaschko (KU Leuven)
Gutachter (Reviewer): Prof. Dr. Jörg Lücke (University of Oldenburg)
Gutachter (Reviewer): Prof. Dr. Klaus-Robert Müller (TU Berlin)

Tag der wissenschaftlichen Aussprache: 22. Mai 2018

Berlin 2018

ii

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Doktorarbeit selbständig und nur mit
den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut
nach anderen Werken entnommen sind, durch Angaben von Quellen als Entlehnung ken-
ntlich gemacht worden sind. Diese Doktorarbeit wurde in gleicher oder ähnlicher Form
in keinem anderen Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

Acknowledgements

The work described in this thesis took place at the Frankfurt Institute for Advanced
Science and at the Technical University of Berlin in their respective Machine Learning
groups. I would like to thank the following people who left significant footprints: Jörg
Lücke for supervising my PhD, for always finding creative solutions and ways to reach our
goals as well as those of the research group, whether it be moving our group to greener,
academically promising pastures or suggesting ways to improve productivity, such as by
informing us that beer makes one more efficient for exactly one hour after consumption
before the effects reverse. Arthur Gretton for always being there in any ways needed,
from best friend to collaborator to academic advisor, despite his constant globe trotting,
inabil Equus ferus caballus forever. Klaus-Robert Müller took me under his wing, was
unconditionally understanding and supportive of my academic and personal challenges,
and with unwaivering patience to boot. Matthew Blaschko has been encouraging since
the beginning of my machine learning studies and has remained one of my strongest ad-
vocates - from supervising my Masters thesis to reviewing the current work of art - citing
inspiration drawn from the Capra aegagrus hircus. Christoph Lampert, for his tough but
inspiring support, an amazing internship in his group at IST Austria, and softening it all
with ice skating in front of the Vienna Rathaus. Saboor Sheikh, for helping to make our
PhD time fun as well as productive, despite continuous strange challenges, and for always
offering a supportive ear or two. Jan Gasthaus, you always knew how to make me strive
for 150% whether I liked it or not. Heiko Strathmann, for proof-reading and revising my
German abstract. Tara Thackeray, when things got rough and the pressure unbearable,
you helped me cope and refocus. Finally, thanks to my parents for their unconditional
support and for mailing me cake.

Abstract

We propose a nonparametric procedure to achieve fast inference in generative graphical
models when the number of latent states is very large. The approach is based on iterative
latent variable preselection, where we alternate between learning a ‘selection function’
to reveal the relevant latent variables, and using this to obtain a compact approximation
of the posterior distribution for EM; this can make inference possible where the number
of possible latent states is e.g. exponential in the number of latent variables, whereas an
exact approach would be computationally infeasible. To increase the efficiency of our
approach, we can draw samples from the compact approximate posterior distribution and
compute the parameters in the M-step as usual. We refer to the procedure combining these
two approximation methods as Select and Sample.

In numerical experiments on artificial data and image patches, we compare the perfor-
mance of the algorithms to the performance of exact EM, latent variable preselection
alone, sampling alone, and the combination of the two for the Select and Sample ap-
proach. For this Sparse Coding example we show the effectiveness and efficiency: it
enables applications easily exceeding a thousand observed and a thousand hidden dimen-
sions.

To apply the Select and Sample approach to a more complex model, we propose a novel,
complex Sparse Coding model that targets low-level image structures, such as edges and
their occlusions. The model uses a Spike-and-Slab prior distribution and has a nonlinear-
ity in the data likelihood, both of which lead to a highly multimodal posterior distribution
and computational/analytical intractabilities. We refer to this model as SSMCA. For ade-
quate representation of the complex posterior, we develop an exact Gibbs sampler based
on the exact form of the posterior distribution. Results on artificial and natural images
show that SSMCA can model the generating process of images with occlusions, includ-
ing extracting individual edge-like structures that occlude each other, and produce results
that are neurally consistent with in vivo neural recordings and with the model’s prior
beliefs.

We learn the selection function entirely from the observed data and current EM state
via Gaussian process regression, calling this method GP-select. This is by contrast with
earlier approaches, where selection functions were manually-designed for each problem
setting. We show that our approach performs as well as these bespoke selection functions
on a wide variety of inference problems: in particular, for the challenging case of a hi-
erarchical model for object localization with occlusion, we achieve results that match a
customized state-of-the-art selection method, at a far lower computational cost.

Zusammenfassung

Wir beschreiben ein nichtparametrisches Verfahren für schnelle Inferenz in generativen
graphischen Modellen mit extrem großen latenten Zustandsräumen. Das Verfahren basiert
auf iterativer Selektion der latenten Variablen. Zunächst wird eine ‘Selektionsfunktion’
zur Aufdeckung von relevanten latenten Zuständen gelernt, welche im nächsten Schritt
für eine kompakte Approximierung der a-posteriori Verteilung im EM Algorithmus ver-
wendet wird. Dies ermöglicht Inferenz wenn die Anzahl der latenten Zustände exponen-
tiell mit der Anzahl der latenten Variablen wächst. Für verbesserte Effizienz, können wir
Stichproben von der a-posteriori Verteilung benutzen um damit im M-Schritt die Parame-
ter stochastisch zu approximieren. Wir nennen den vorgestellten Algorithmus ‘Select and
Sample’.

Wir vergleichen unseren Algorithmus mit den folgenden EM Varianten auf künstlichen
Daten und Bildausschnitten: exakter EM, nur Vorselektion der latenten Variablen, nur
stochastische Approximation, und die Kombination der beiden Approximationen des ‘Se-
lect and Sample’ Verfahrens. Unser Beispiel belegt die Effizienz unserer Methode, die
Inferenz mit tausenden Datenpunkten und latenten Dimensionen ermöglicht.

Um ‘Select and Sample’ auf ein komplizierteres Modell anzuwenden, entwickeln wir ein
neues complexes ‘Sparse Coding’ Modell, welches auf gründsätzlichen Bildeigenschaften
wie z.B. Kanten und deren überlagerung basiert. Unser Modell, genannt ‘SSMCA’, nutzt
eine ‘Spike-and-Slab’ a-priori Verteilung und eine nicht-lineare Likelihoodfunktion, was
in einer hochdimensionalen, multi-modalen a-posteriori Verteilung führt. Um die kom-
plexe a-posteriori Verteilung genau vergleichen zu können entwickeln wir eine ‘Gibbs
Sampling’ Methode, welche genaue Form der Verteilung verwendet. Unsere Ergebnisse
auf künstlichen und natürlichen Bildern zeigen, dass ‘SSMCA’ den generativen Prozess
der Bildern mit überlagerungen abbilden kann: Sowohl Kantenstrukturen als auch über-
lagerungen können extrahiert werden und sind neuronal plausibel.

Wir lernen die Selektionsfunktion ausschliesslich von den beobachteten Daten und dem
aktuellen EM Zustand mittels Gauss Prozessen. Wir nennen diese Methode ’GP-Select’.
Dies kontrastiert frühere Verfahren, bei denen die Selektionsfunktion per Hand für jedes
Problem neu entwickelt werden musste. Wir zeigen, dass unsere Methode Ergebnisse pro-
duziert, die genauso gut wie die von Hand entwickelten Selektionsfunktionen sind – auf
einer Vielfalt von Inferenzproblemen. Unsere Ergebnisse im herausfordernden Fall von
hierarchischen Modellen für Objektlokalisierung mit Uberlagerungen sind en-par mit ein-
er speziell angepassten modernsten Selektionsmethode, bei deutlich reduzierter Rechen-
szeit.

Contents

1 Introduction 1
1.1 Problem Setting . 2
1.2 Background . 3
1.3 Roadmap . 7
1.4 Summary of Main Chapters . 10
1.5 Scientific Contributions . 11
1.6 Publications . 13

2 Select and Sample - A Model of Efficient Neural Inference and Learning 15
2.1 Introduction . 15

2.1.1 Background . 16
2.2 A Select and Sample Approach to Approximate

Inference . 17
2.2.1 Selection . 18
2.2.2 Sampling . 19
2.2.3 Select and Sample . 20

2.3 Sparse Coding: An Example Application 20
2.4 Experiments . 24

2.4.1 Artificial Data . 24
2.4.2 Natural Image Patches . 25
2.4.3 Large Scale Experiment on Natural Image Patches 26

2.5 Discussion . 27
2.6 Supplementary Material . 29

3 Nonlinear Spike-and-Slab Sparse Coding for Intepretable Image Encoding 30
3.1 Introduction . 30
3.2 Model: Nonlinear Spike-and-Slab Sparse Coding 35

3.2.1 Related Work . 36
3.3 Inference: Exact Gibbs Sampling with Preselection 37

3.3.1 Parameter Estimation . 37

ii

CONTENTS iii

3.3.2 Exact Gibbs Sampling with Latent Variable Preselection 39
3.4 Experiments . 43

3.4.1 Parameter Recovery on Artificial Ground-truth Data 44
3.4.2 Occlusions Data: Dictionary Learning and Image Reconstruction 44
3.4.3 Natural Image Patches and Neural Consistency 54

3.5 Discussion . 57
3.6 Supplementary Material . 59

3.6.1 M-step Parameter Equation Derivations 59
3.6.2 Experiments: Natural Image Patches 60

4 GP-select: Accelerating EM using Adaptive Subspace Preselection 64
4.1 Introduction . 64
4.2 Related Work . 65
4.3 Variable Selection for Accelerated Inference 66

4.3.1 Selection via Expectation Truncation in EM 66
4.3.2 ET with Affinity . 67
4.3.3 Inference in EM with Selection 69

4.4 GP-select . 70
4.5 Experiments . 71

4.5.1 Sparse Coding Models . 72
4.5.2 Gaussian Mixture Model . 76
4.5.3 Translation Invariant Occlusive Models 78

4.6 Discussion . 82

5 Conclusion and Discussion 85

Bibliography 87

A Contributions 97

Chapter 1

Introduction

We have entered the era of big data - there is a wealth of data available from countless
sources, from webpages to YouTube videos to images, and so on. In order to understand,
learn, and extract patterns from this huge plethora of data, we need automated methods
of data analysis. Machine learning is an interdisciplinary field that offers such methods
– it focuses on mathematical foundations and practical applications of systems that can
find structure, predict new outcomes, and choose actions wisely. Thus we define machine
learning to be a set of methods capable of automatically detecting patterns in data, using
the uncovered patterns to predict future data, or to make decisions under uncertainty (even
the decision to collect more data).

The probabilistic approach to machine learning uses the tools of probability theory to
solve problems involving uncertainty. This approach allows us to quantify and make use
of this information instead of regarding it as a nuisance to solving the problem. Uncer-
tainty can come in many forms - each observation/data point provides information, but we
are never completely certain about e.g. what can some past data predict about the future,
or what the best model is to explain some data, and so on. This is taken into consider-
ation when forming probabilistic models of data. Figure 1.1 shows an illustration of a
very simple probabilistic graphical model - the observed data is denoted by y which are
conditioned on the (latent) variables denoted by s. In the latent variable model setting,
we would only observe y from which the values of latent variables s could be inferred.
Following Bayesian reasoning, we denote a prior distribution over the latent variables s

with p(s) and the likelihood of the data with p(y|s). Furthermore, this can also be treated
as a generative model, as the process that generated the observations p(y|s) can be mod-
elled, necessitating the modelling of the joint distribution of both the latent and observed
variables p(y, s).

This body of work focuses on probabilistic modelling and inference in generative graph-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of a simple graphical
model, where the node with s is data mod-
elled by the probability distribution p(s) and
the node with y represents the data observed
given s for the data likelihood p(y|s). In the
case of a latent variable model, s is not ob-
served. This can depict a generative model
if the goal is to model the generation process
of the observations p(y|s), for which the joint
distribution of both the latent and observed
variables p(y, s) needs to be modelled.

s

y
p(y|s)

p(s)

 p(y,s)

}

ical models with a large number of hidden variables, each of which may take on one
of several state values. Without adequate approximations, inference in these models be-
comes computationally (and sometimes also analytically) intractable, thus in this thesis
we develop methods to efficiently overcome these challenges.

1.1 Problem Setting

When hidden variables are present, learning of parameters in probabilistic graphical mod-
els can quickly become intractable as the dimensionality of hidden states increases. Con-
sider, for instance, the floor of a nursery populated with different toys, and images of
this floor large enough to contain a number of toys. A nursery easily contains a hundred
different toys and any subset of these hundred toys may appear in any image. For one
hundred toys there is therefore a combinatorics of 2100 different combinations of toys that
can make up an image. An inference task may now be to infer, for any given image,
the toys it contains. If we approached this task using a probabilistic graphical model, we
would define a basic such model using a set of one hundred hidden variables (one for each
toy). Given a specific image, inference would then take the form of computing the poste-
rior probability for any combination of toys, and from this, for example, the probability
of each toy to be in the image can be computed. If done exactly, this process needs to
evaluate all the 2100 different toy combinations which easily exceeds currently available
computational resources.

While there are also many tasks for which graphical models with few latent variables are
sufficient, the requirement for many hidden variables (as in the toy example) is typical
for visual, auditory and many other types of data with very rich structure. Graphical
models for such data are often a central building block for tasks such as denoising (Elad
and Aharon, 2006; Lázaro-gredilla and Titsias, 2011), inpainting (Mairal et al., 2009b,a;
Lázaro-gredilla and Titsias, 2011), classification (Raina et al., 2007), or collaborative

1.2. BACKGROUND 3

filtering (Lázaro-gredilla and Titsias, 2011). Typically, the performance in these tasks
improves with the number of latent variables that can be used (and which is usually limited
by computational demands).

1.2 Background

We first formulate a probabilistic model of the data. Denote the data set of size N as
Y = {y(1), . . . ,y(N)} where a single observed data point (e.g. an image of toys, in the
above example) is denoted y(n) = (y1, . . . , yD), and the set of latent variables is denoted
S = {s(1), . . . , s(N)} with s(n) = (s1, . . . , sH), where there are D observed variables (e.g.
pixels) and H latent variables (e.g. toys), respectively. We denote the prior distribution
over the latent variables as p(S|θ) and the likelihood of the data as p(Y |S, θ). Using these
expressions the data distribution can then be modelled by a generative data model for the
data likelihood:

p(Y |Θ) =
∑
S

p(Y |S,Θ) p(S |Θ) (1.1)

with Θ denoting the parameters of the model. Equation (1.1) assumes discrete latent
variables, but in the case of continuous variables the sum is replaced by an integral:
p(Y |Θ) =

∫
S
p(Y |S,Θ) p(S |Θ). For a hierarchical model, the prior distribution p(S |Θ)

may be subdivided hierarchically into different sets of variables.

Considering a single data point, the posterior distribution over latent variables is defined
as follows:

p(s|y(n),Θ) =
p(s|Θ) p(y(n)|s,Θ)∑

s ′

p(s ′ |Θ) p(y(n)|s ′ ,Θ)
(1.2)

To find the optimal parameters Θ, we must solve the following optimization problem:
given data set Y find maximum likelihood parameters Θ∗:

Θ∗ = argmax
Θ

p(Y |Θ) (1.3)

Solving the optimization problem in Equation (1.3) requires marginalizing over all H
latent variables in s, as shown in the denominator of the posterior distribution in Equa-
tion (1.2). This step quickly becomes computationally intractable as the number of latent
variables increases.

Expectation Maximization (EM) is a standard procedure widely applied to learn the max-
imum likelihood model parameters given graphical model when hidden variables are
present (see e.g. (Dempster et al., 1977; Neal and Hinton, 1998)). EM is an algorithm

4 CHAPTER 1. INTRODUCTION

that iteratively optimizes a lower bound of the data likelihood, called the free energy, by
inferring the posterior distribution over hidden variables given the current parameters (the
E-step), and then adjusting the parameters to maximize the likelihood of the data averaged
over this posterior (the M-step). This process can be formalized as follows:

Maximize objective function L(Θ) = log p(Y |Θ) with respect to Θ by optimizing the
free energy F :

L(Θ) ≥ F(Θ, q) =
∑
s

q(S|Θ) log
p(Y, S|Θ)

p(S|Θ)
(1.4)

= 〈log p(Y, S)〉q(S|Θ) + H[q(S)] (1.5)

where q is a distribution over the hidden variables used to obtain the lower bound on
the log likelihood L(Θ) and H[q] is the entropy of q(S). For simplification we now
temporarily drop the index to the nth data point.

Using EM, iteratively optimize F(Θ, q):

E-Step: compute posterior distribution q, parameters fixed

argmax
q(s|Θ)

F(Θ, q)→ q(s|Θ) := p(s|y,Θ) (1.6)

M-Step: estimate model parameters, q fixed

argmax
Θ

F(Θ, q)→ Θ := argmax
Θ
〈log p(y, s)〉q(s|Θ) (1.7)

M-step is only concerned with the expected log likelihood as the entropy of q(s) does
not depend directly on Θ. The free energy can be rewritten as F(Θ, q) = L(Θ) −
KL[q(s) || p(s|y,Θ)], where the second term is the Kullback-Leibler divergence. In other
words, for fixed Θ, F(Θ, q) is bounded above by the log likelihood, which is only fulfilled
when KL[q(s) || p(s|y,Θ)] = 0, or rather, when q(s) = p(s|y,Θ). Thus, the E-step sim-
ply sets q(s) to be equal to the current computation of the posterior distribution p(s|y,Θ).

The M-step updates typically depend only on a small number of expectations with respect
to the posterior distribution as given by

〈g(s)〉p(s |y (n),Θ) =
∑
s

p(s |y (n),Θ) g(s) , (1.8)

where g(s) is usually an elementary function of the hidden variables, namely, the suf-
ficient statistics under p(s |y (n),Θ). The sum is replaced by an integral for continuous
latents. Calculating the expectations (1.8) is the computationally demanding part of EM
optimization for any non-trivial generative model as the posterior distribution computed
in the E-step (1.6) can be very complex and high-dimensional. The exact computation

1.2. BACKGROUND 5

of the expectations is therefore often intractable and many well-known algorithms (e.g.
Olshausen and Field, 1996; Lee et al., 2007) have to rely on approximations. Especially
when the number of latent states to consider is large (e.g. exponential in the number of
latent variables), computing the posterior distribution becomes intractable, rendering ap-
proximations unavoidable.

A wide variety of approximate inference methods exist, all with their own advantages
and disadvantages, and the area continues to be a hugely active field of research. We de-
scribe some of the more popular approaches. The Laplace approximation method makes
a Gaussian approximation to the posterior distribution (Laplace, 1774) (see e.g. (Mur-
phy, 2012) Section 8.4.1 for an illustration). This method is simple, efficient and can be
a reasonable approximation when sample sizes are large, since posteriors often become
more “Gaussian-like”, for reasons analogous to the central limit theorem. However, it
is not gauranteed to converge. The posterior can also be approximated with stochastic
methods such as Markov chain Monte Carlo methods (MCMC) (see (Neal, 1993) for a
review). MCMC methods draw samples from the posterior distribution and can be used to
e.g. compute the expected sufficient statistics under the posterior in Equaton (1.8). These
methods are guaranteed to converge to the true posterior distribution in the limit, even
when the posterior is high-dimensional and/or multimodal. However, many samples are
required to ensure accuracy, thus their ability to represent complex posterior distributions
is limited by available computational resources. Additionally, there is often high variance
in the estimated integrals/summations and it is sometimes difficult to assess convergence.
Another way to approximate the posterior distribution is by using variational approxi-
mations (see (Wainwright and Jordan, 2003) for a review) where the objective, based
directly on the form of the free-energy function (1.4), is to approximate q(s) such that
the KL-divergence between it and the true posterior, KL[q(s) || p(s|y,Θ)], is minimized.
These methods are efficient and easy to compute but produce biased estimates. They often
use a factorial prior over the latent variables which results in a factored posterior distribu-
tion, however this is a generally unrealistic assumption and neglects correlations between
latents (explaining away). Instead, in this work we focus on an approximate inference
approach that can represent complex posterior distributions without ignoring correlations
between latent variables (i.e. can avoid the effects of explaining away), has the ability to
represent multiple mode in the posteriors, and is efficiently computable.

Expectation truncation (ET) is an approximate EM algorithm for accelerating inference
and learning in graphical models with many latent variables (Lücke and Eggert, 2010).
Its basic idea is to restrict the inference performed during the E-step to an “interesting”
subset of states of the latent variables, chosen per data point according to a selection
function. This subspace reduction can lead to a significant decrease in computational
demand with very little loss of accuracy (compared with the full model). This approach is

6 CHAPTER 1. INTRODUCTION

inherently suited for problems with sparse latent variables as it narrows in on the areas of
the posterior where the variables in the ‘restricted set’ have the greatest probability mass.
To provide an intuition: For the toy example introduced earlier, we could for instance
first analyze the colors contained in a given image. If the image did not contain the
color “red", we could already assume red toys or partly red toys to be absent. Only in
a second step would we then consider the combinatorics of the remaining toys. More
features and more refined features would allow for a reduction to still smaller sets of
toys until the combinatorics of these selected toys becomes computationally tractable.
The selection function of ET mathematically models the process of selecting the relevant
hidden variables (the relevant toys); while truncated posterior distributions then models
their remaining combinatorics (see further below). Using ET, the posterior distribution in
Equation (1.2) can then be approximated by a posterior distribution with support truncated
to the preselected latent variables:

p(s|y(n),Θ)

≈ qn(s; Θ) =
p(s,y(n)|Θ) I(s ∈ Kn)∑

s ′∈Kn

p(s ′,y(n)|Θ)
, (1.9)

where Kn contains the latent states of the relevant variables for data point y(n), and
I(s ∈ Kn) = 1 if s ∈ Kn and 0 otherwise. In other words, Equation (1.9) is pro-
portional to Equation (1.2) if s ∈ Kn (and zero otherwise). The set Kn contains only
states for which sh = 0 for all h that are not selected, i.e. all states where sh = 1 for
non-selected h are assigned zero probability. This means that there are fewer terms in
the denominator of the truncated posterior in Equation (1.9) compared with that of full
posterior in Equation (1.2), which affects the overall scaling of the terms. The truncated
posterior (1.9) still remains proportional to the full posterior (1.2) for the selected terms
s ∈ Kn, however. The sum over Kn is much more efficient than the sum for the full
posterior, since it need only be computed over the reduced set of latent variable states
deemed relevant: the state configurations of the irrelevant variables are fixed to be zero.
The variable selection parameter is selected based on the compute resources available:
i.e. as large as resources allow in order to be closer to true EM, although empirically it
has been shown that much smaller values suffice with very little loss of accuracy (see e.g.
Sheikh et al., 2014, Appendix B on complexity-accuracy trade-offs).

The approximation of the full posterior distribution (1.9) can be used to compute effi-
ciently the expectations needed in the M-step (1.7):

〈g(s)〉p(s |y (n),Θ) ≈ 〈g(s)〉q(n)(s;Θ) =

∑
s∈Kn

p(s,y (n) |Θ) g(s)∑
s ′∈Kn

p(s ′,y (n) |Θ)
. (1.10)

1.3. ROADMAP 7

Equation (1.10) represents a reduction in required computational resources as it involves
only summations (or integrations) over the smaller state space Kn. The bottleneck here
is that the set Kn needs to be selected prior to the computation of expectations, and the
final computational acceleration relies on such selections being efficiently computable
and well-suited to the model under consideration.

A selection function Sh(y,Θ) is used to identify a subset of salient variables from H ,
denoted by H ′ where H ′ � H . This is in turn used to define a subset, denoted Kn, of the
possible state configurations of the space per data point y. State configurations not in this
space (of variables deemed to be non-relevant) are fixed to 0 (assigned zero probability
mass). Kn can be formally defined as follows:

Kn = {s | for all h 6∈ I : sh = 0} , (1.11)

where I contains theH ′ indices hwith the highest values of a selection function Sh(y,Θ).
Appropriate selection functions Sh(y,Θ), for e.g. Sparse Coding models, can be found by
deriving efficiently computable upper-bounds for probabilities p(sh = 1 |y (n),Θ) (Puer-
tas et al., 2010) or via deterministic relations s = f(y,Θ) in the limit of no data noise
(Henniges et al., 2010). Usually however, the selection functions are derived by hand
for each individual model for which ET is using them, requiring expertise in the problem
domain. We can expect the approximation to be accurate only if restricting the combi-
natorics (e.g. combinations of a restricted number of toys) does not miss large parts of
posterior mass. The larger Kn the less precise the selection has to be, but with the obvi-
ous trade-off of necessary compute resources. For Kn equal to the entire state space, no
selection is required and the approximations (1.9) and (1.10) fall back to the case of exact
inference.

1.3 Roadmap

In Chapter 2, we introduce an approach that combines latent variable preselection (via
ET) with MCMC sampling methods for the acceleration of inference and learning with
EM. The idea is to combine the strengths of each approach in order to represent complex
posterior distributions while also reducing the necessary computations to do so. Incor-
porating a sampling method with ET allows for the representation of multiple modes
and arbitrary correlations within the posterior regions that have already been preselected
to the reduced state space with highest probability mass. Generally a huge amount of
samples is necessary to adequately represent complex distributions – they may be very
correlated (because of explaining away effects), multimodal (multiple possible interpre-
tations), and very high-dimensional. As our method only draws samples from the more

8 CHAPTER 1. INTRODUCTION

compact posterior distribution truncated to the ‘interesting’ variables instead of the full
complex distribution, this main drawback of sampling methods is minimized. We refer to
our combined approach as Select and Sample.

Select and Sample can be interpreted as neurally plausible. Inference and learning in neu-
ral circuits can be regarded as the task of inferring the true hidden causes of a stimulus.
An example is inferring the objects in a visual scene based on the image projected on the
retina. Latent variable preselection connects sampling to very influential models of neural
processing that emphasize feed-forward processing ((Rosenblatt, 1958; Riesenhuber and
Poggio, 1999) and many more), and is consistent with the popular view of neural process-
ing and learning as an interplay between feed-forward and recurrent stages of processing
(Yuille and Kersten, 2006; Hinton et al., 1995; Körner et al., 1999; Lee and Mumford,
2003a). Our combined approach encompasses these views of processing in neural cir-
cuits naturally by interpreting feed-forward selection and sampling as approximations to
exact inference in a probabilistic framework for perception.

We demonstrate the effectiveness and efficiency of the Select and Sample approach on a
vanilla Sparse Coding model optimized with EM. In numerical experiments on artificial
data and image patches, we compare the performance of Sparse Coding with posterior
distributions in the E-step computed using the following: the full posterior for exact EM
(tractable with simpler data), latent variable preselection alone, a Gibbs sampling method
(details in Chapter 2), and the combination of the two (Select and Sample). Our approach
performs well in applications exceeding a thousand observed and a thousand hidden vari-
ables.

In Chapter 3, we apply the Select and Sample approach introduced in Chapter 2 to a novel
and complex Sparse Coding model. Sparse Coding is a popular approach to model nat-
ural images but has faced two main challenges: modelling low-level image components
(such as edge-like structures and their occlusions) and modelling varying pixel intensities.
Traditionally, images are modeled as a sparse linear superposition of dictionary elements,
where the probabilistic view of this problem is that the coefficients follow a Laplace or
Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab
prior and nonlinear combination of components. With the prior, our model can easily
represent exact zeros for e.g. the absence of an image component, such as an edge, and
a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max
combination rule), the idea is to target occlusions; dictionary elements correspond to im-
age components that can occlude each other. There are major consequences of the model
assumptions made by both (non)linear approaches, thus an important goal of this Chapter
is to isolate and highlight differences between them. Furthermore, parameter optimization
is analytically and computationally intractable in our model. Thus another core contribu-
tion of this work is the development of an exact Gibbs sampler in order to adequately

1.3. ROADMAP 9

sample the complex posterior distribution resulting from the nonlinearity in the data like-
lihood. This approach allows for efficient inference, but by first preselecting the most
"interesting" latent variables (as in Select and Sample), we can speed up the inference
process as well as handle higher dimensional data.

Results on natural and artificial occlusion-rich data with controlled forms of sparse struc-
ture show that our model can extract a sparse set of edge-like components that closely
match the generating process, which we refer to as interpretable components. Further-
more, the sparseness of the solution closely follows the ground-truth number of compo-
nents/edges in the images. The linear model did not learn such edge-like components with
any level of sparsity. This suggests that our model can adaptively well-approximate and
characterize the meaningful generation process. Finally, experiments on natural image
patches, show neural consistency of our model in two ways: its predictions are consistent
with (1) in vivo neural recordings and with (2) the model’s prior beliefs.

In Chapter 4, we generalize the preselection optimization method (introduced in Chap-
ter 2 and applied in Chapter 3) in a model-independent nonparametric black-box way
for further acceleration of EM. The definition of appropriate selection functions for basic
graphical models (such as the nursery floor example discussed above) is already non-
trivial. For models incorporating more detailed data properties, the definition of selec-
tions functions becomes still more demanding. For visual data, e.g. models that also
capture mutual object occlusions (Henniges et al., 2014) and/or the object position (Dai
and Lücke, 2014), the design of suitable selection functions is extremely challenging: it
requires both expert knowledge on the problem domain and considerable computational
resources to implement (indeed, the design of such functions for particular problems has
been a major contribution in previous work on the topic).

We propose a generalization of the ET approach, where we completely avoid the chal-
lenge of problem-specific selection function design. Instead, we learn selection functions
adaptively and nonparametrically from the data, while learning the model parameters si-
multaneously using EM. We emphasize that the selection function is used only to “guide"
the underlying base inference algorithm to regions of high posterior probability, but is not
itself used as an approximation to the posterior distribution. As such, the learned function
does not have to be a completely accurate indication of latent variable predictivity as long
as the relative importance of the latent states likely to contribute posterior probability
mass is preserved. We use Gaussian process regression (Rasmussen and Williams, 2005)
to learn the selection function – by regressing the expected values of the latent variables
onto the observed data – though other regression techniques could also be applied. The
main advantage of GPs is that they do not need to be re-trained when only the output
changes, as long as the inputs remain the same. This makes adaptive learning of a chang-
ing target function (given fixed inputs) computationally trivial (this will become clear in

10 CHAPTER 1. INTRODUCTION

Section 4.4). We term this part of our approach GP-select. Our nonparametric general-
ization of ET may be applied as a black-box meta algorithm for accelerating inference in
generative graphical models, with no expert knowledge required.

Our approach is the first to make ET a general purpose algorithm for discrete latent vari-
ables,whereas previously, ET had to be modified by hand for each latent variable model
addressed. For instance, we will show that preselection is crucial for efficient inference
in complex models. Although ET has already been successful in some models, this work
shows that more complex models will crucially depend on an improved selection step and
focuses on automating this step.

For empirical evaluation, we have applied GP-select in a number of experimental settings.
First, we considered the case of Sparse Coding models (binary Sparse Coding, spike-and-
slab, nonlinear spike-and-slab), where the relationship between the observed and latent
variables is known to be complex and nonlinear.1 We show that GP-select can produce
results with equal performance to the respective manually-derived selection functions. In-
terestingly, we find it can be essential to use nonlinear GP regression in the spike-and-slab
case, and that simple linear regression is not sufficiently flexible in modelling the posterior
shape. Second, we illustrate GP-select on a simple Gaussian mixture model, where we
can provide intuition and explicitly visualize the form of the learned regression function.
We find that even for a simple model, it can be be essential to learn a nonlinear map-
ping. Finally, we present results for a recent hierarchical model for translation invariant
occlusive components analysis (Dai and Lücke, 2014). The performance of our inference
algorithm matches that of the complex hand-engineered selection function of the previ-
ous work, while being straightforward to implement and having a far lower computational
cost.

In Chapter 5 we summarize and review the overall conclusions and contributions of this
body of work and discuss potential future directions.

1.4 Summary of Main Chapters

The Roadmap provided a comprehensive outline of the thesis in which the three chapter
containing the main content were introduced. A condensed summary of these chapters is
as follows:

1Note that even when linear relations exist between the latents and outputs, a nonlinear regression may
still be necessary in finding relevant variables, as a result of explaining away.

1.5. SCIENTIFIC CONTRIBUTIONS 11

• Chapter 2 (Efficient Inference with ‘Select and Sample’): In this chapter we
introduce an inference method, ‘Select and Sample’, that combines latent variable
preselection with Markov Chain Monte Carlo (MCMC) sampling methods for the
acceleration of EM. We demonstrate the effectiveness of our approach by consid-
ering a simple Sparse Coding model parameterized with a binary prior distribution
over the latent variables and a Gaussian distribution over the observed variables.

• Chapter 3 (Nonlinear Spike-and-Slab Sparse Coding): In this chapter we in-
troduce a novel Sparse Coding model with a Spike-and-Slab prior distribution and
a nonlinearity in the data likelihood. This leads to a highly multimodal posterior
distribution and computational/analytical intractabilities. We apply the Select and
Sample approach of Chapter 2 to this model, which due to the complex posterior,
requires the development of new MCMC method.

• Chapter 4 (Generalizing Subspace Preselection with GP-select): In this chapter
we introduce a nonparametric generalization of Select and Sample. In the previous
chapters, the ’selection’ step of the method used a manually-designed function to
learn a mapping from the observed data to the current EM state for each problem
setting. Instead here we use Gaussian process regression to learn such a function
automatically and with increased efficiency. We demonstrate the effectiveness and
efficiency of this approach on a wide variety of inference problems, including a
hierarchical model for object localization with occlusion.

1.5 Scientific Contributions

The work in this thesis makes several contributions. The peer-reviewed articles corre-
sponding to these contributions are cited at the beginning of the relevant Chapter. The
following are the main contributions:

• An approach for efficient approximate inference in generative graphical mod-
els (Select and Sample): We propose the fundamental approximate inference ap-
proach for accelerated inference and learning, which was built upon and applied
in the subsequent Chapters. This approach combines latent variable preselection
with Markov Chain Monte Carlo (MCMC) sampling methods for the acceleration
of inference and learning with EM. The preselection of the relevant latent variables
is done with a selection function. This allows us to capture the strengths of each ap-
proach in representing complex posterior distributions and simultaneously reduce
computational costs of inference with little to no loss of accuracy.

• A nonlinear probabilistic model of occlusions in images (SSMCA): We intro-

12 CHAPTER 1. INTRODUCTION

duce a complex and novel Sparse Coding model designed to model low-level image
components (such as edge-like structures and their occlusions). The model used a
complex prior distribution (Spike-and-slab) – to model the presence/absence of e.g.
an edge as well as its pixel intensity – and has a nonlinearity in the data likelihood
(the nonlinear max combination rule) to target occlusions, i.e. dictionary elements
correspond to image components that can occlude each other. We apply Select and
Sample to this complex Sparse Coding model.

• An exact MCMC method for inference in the proposed nonlinear Sparse Cod-
ing model: In order to do inference in the SSMCA model, we develop an exact
Gibbs sampler constructed exactly after the nonlinearity in the data likelihood of
the SSMCA model. The nonlinearity in the data likelihood leads to a highly multi-
modal complex posterior distribution, thus in order to adequately sample this distri-
bution we develop an exact Gibbs sampler based on the exact form of the posterior
distribution. This allows for the successful application of Select and Sample to a
complex Sparse Coding model. Furthermore, our results show that SSMCA can
model the generating process of images with occlusions, including extracting indi-
vidual edge-like structures that occlude each other, and makes predictions that are
neurally consistent.

• The generalization of the variable preselection process (GP-select): We propose
a model-independent nonparametric black-box way to define a suitable selection
function efficiently. Namely, we learned the selection function entirely from the
observed data and current EM state using Gaussian process regression. Empirical
experiments show equivalent performance between our inference algorithm (using
GP-select to preselect variable) and algorithms of previous work (using a complex
hand-engineered selection function for preselection). At the same time, GP-select
is straightforward to implement and has a far lower computational cost.

1.6. PUBLICATIONS 13

1.6 Publications

Many aspects of this thesis have been published previously in peer-reviewed venues:

• Shelton, J., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A., 2017. GP-select: Ac-
celerating EM using adaptive subspace preselection. Neural Computation 29 (8),
2177–2202.

• Shelton, J., Sheikh, A.-S., Bornschein, J., Sterne, P., Lücke, J., 2015. Nonlinear
Spike-and-Slab Sparse Coding for Interpretable Image Encoding. PLOS ONE 10
(5), 1–25.

• Shelton, J., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A., 2014. GP-select: Ac-
celerating EM using adaptive subspace preselection. Women in Machine Learning
Workshop (WiML 2014) in conjunction with NIPS, Montreal, Quebec.

• Lücke, J., Shelton, J., Bornschein, J., Sterne, P., Berkes, P., Sheikh, A.-S., 2013.
Combining Feed-Forward Processing and Sampling for Neurally Plausible Encod-
ing Models. Computational and Systems Neuroscience 12.

• Shelton, J., Sheikh, A.-S., Sterne, P., Bornschein, J., Lücke, J., 2013. Nonlinear
Spike-and-Slab Sparse Coding for Interpretable Image Encoding. NIPS Workshop
on High-dimensional Statistical Inference in the Brain.

• Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., Lücke, J., 2012. Why MCA?
Nonlinear Spike-and-Slab Sparse Coding with Spike-and-Slab Prior for Neurally
Plausible Image Encoding. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K.
(Eds.), Advances in Neural Information Processing Systems 25. pp. 2285–2293.

• Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., Lücke, J., 2012. Why MCA?
Nonlinear Spike-and-Slab Sparse Coding with Spike-and-Slab Prior for Neurally
Plausible Image Encoding. Women in Machine Learning Workshop (WiML 2012)
in conjunction with NIPS, Lake Tahoe, Nevada.

• Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., Lücke, J., 2011. Select and
Sample - A Model of Efficient Neural Inference and Learning. In: Shawe-Taylor,
J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (Eds.), Advances in Neural
Information Processing Systems 24. pp. 2618–2626.

• Dai, Z., Shelton, J., Bornschein, J., Sheikh, A.-S., Lücke, J., 2011. Combining Ap-
proximate Inference Methods for Efficient Learning on Large Computer Clusters.
NIPS workshop on Big Learning: Algorithms, Systems, and Tools for Learning at
Scale.

14 CHAPTER 1. INTRODUCTION

• Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., Lücke, J., 2011. Select and
Sample - A Model of Efficient Neural Inference and Learning. Women in Machine
Learning Workshop (WiML 2011) in conjunction with NIPS, Malaga, Spain.

In addition, here are peer-reviewed works I was involved with not appearing in the thesis:

• Sheikh, A-S., Shelton, J., Lücke, J., 2014. A Truncated EM Approach for Spike-
and-Slab Sparse Coding. Journal of Machine Learning Research 15, 2653–2687.

• Shelton, J., Lampert, C., 2013. Approximate Inference with δ-insensitive Marginal
Loss. Women in Machine Learning Workshop (WiML 2013) in conjunction with
NIPS, Lake Tahoe, Nevada.

• Bornschein, J., Shelton, J., Sheikh, A.-S., and Lücke, J., 2011. The Maximal
Causes of Binary Data. Bernstein Conference on Computational Neuroscience
(BCCN).

Chapter 2

Select and Sample - A Model of
Efficient Neural Inference and Learning

In this Chapter we introduce a novel inference scheme combining latent variable prese-
lection and sampling for the acceleration of EM.

The work presented in this Chapter can be found in the following publications: Shelton
et al. (2011a,b).

2.1 Introduction

An increasing number of experimental studies indicate that perception encodes a posterior
probability distribution over possible causes of sensory stimuli, which is used to act close
to optimally in the environment. One outstanding difficulty with this hypothesis is that the
exact posterior will in general be too complex to be represented directly, and thus neurons
will have to represent an approximation of this distribution. Two influential proposals
for how neural populations could achieve an efficient posterior representation are 1) that
neural activity represents samples of the underlying distribution, or 2) that they repre-
sent a parametric representation of a variational approximation of the posterior. In this
work, we propose a method for accelerated inference in EM that can account for both of
these suggested neural approaches and their respective advantages. Namely, our approach
combines the strengths of both sampling methods and variational approximations: it can
represent multiple modes and arbitrary correlations and reduce the represented space to
regions of high probability mass, respectively. Neurally, the combined method can be
interpreted as a feed-forward preselection of the relevant state space, followed by a neural
dynamics implementing Markov Chain Monte Carlo (MCMC) to approximate the pos-

15

16 CHAPTER 2. SELECT AND SAMPLE

terior over the relevant states. We demonstrate the effectiveness and efficiency of this
approach on a sparse coding model. In numerical experiments on artificial data and im-
age patches, we compare the performance of the algorithms to the performance of exact
EM, variational state space selection alone, MCMC alone, and the combined Select and
Sample approach. For sparse coding we find that it enables applications easily exceeding
a thousand observed and a thousand hidden dimensions.

2.1.1 Background

According to the statistical approach to perception which is becoming increasingly popu-
lar, our brain would represent not only the most likely interpretation of a stimulus, but also
the uncertainty associated with it. Ideally, the brain would represent the full posterior dis-
tribution over all possible interpretations of the stimulus, which is statistically optimal for
inference and learning (Dayan and Abbott, 2001; Rao et al., 2002; Fiser et al., 2010). An
increasing number of psychophysical and electrophysiological studies (Ernst and Banks,
2002; Weiss et al., 2002; Kording and Wolpert, 2004; Beck et al., 2008; Trommershäuser
et al., 2008; Berkes et al., 2011a) support this hypothesis.

One approach researchers have taken to explore processing in neural circuits is to as-
sume that neuronal activity represent the parameters of a variational approximation of
the real posterior (Ma et al., 2006; Turner et al., 2011). While this approach allows the
instantaneous representation of an approximate version of the full posterior, the number
of neurons still explodes with the number of variables. For example, approximating the
posterior with a Gaussian distribution requires N2 parameters to represent the covariance
matrix over N variables. Another approach is to identify neurons as variables, and in-
terpret neural activity as samples from their posterior (Lee and Mumford, 2003a; Hoyer,
2003; Fiser et al., 2010). This interpretation is consistent with a range of experimen-
tal observations, including neural variability (which would result from the uncertainty
in the posterior) and spontaneous activity (corresponding to samples from the prior in
the absence of a stimulus (Fiser et al., 2010; Berkes et al., 2011a). The advantage of
a sampling-based representation is that the number of neurons scales linearly with the
number of variables, while retaining the ability to represent arbitrarily complex posteriors
given enough samples. However, an important consideration with this approach is the
amount of time needed to collect a sufficient number of samples in order to form a com-
plete enough representation of the posterior. modelling studies have shown that a small
number of samples are sufficient to perform well on low-dimensional tasks (intuitively,
this is because taking a low-dimensional marginal of the posterior accumulates samples
over all dimensions) (Vul et al., 2009; Berkes et al., 2011b). However, most sensory data
is inherently very high-dimensional. For instance, to faithfully represent visual scenes

2.2. A SELECT AND SAMPLE APPROACH TO APPROXIMATE INFERENCE 17

containing potentially many objects and object parts, one requires a high-dimensional la-
tent space to represent the high number of potential causes. For high dimensionalities,
sampling approaches usually suffer from long burn-in times and require in general a high
number of samples to represent non-trivial posteriors. With variable preselection, Select
and Sample efficiently minimizes the drawbacks of sampling methods and simultaneously
takes advantage of their ability to represent complex distributions.

2.2 A Select and Sample Approach to Approximate
Inference

To illustrate Select and Sample, we will consider the task of inferring the true latent
variables in a visual stimulus, e.g. the objects in a visual scene based on the image pro-
jected on the retina. We will refer to the sensory stimulus (the image) as a data point,
y = (y1, . . . , yD), and we will refer to the hidden causes (the objects) as s = (s1, . . . , sH)

with sh denoting the hidden variable or hidden unit h. The data distribution can then be
modelled by a generative data model: p(y |Θ) =

∑
s p(y | s,Θ) p(s |Θ) with Θ denot-

ing the parameters of the model. If we assume that the data distribution can be optimally
modelled by the generative distribution for optimal parameter Θ∗, then the posterior prob-
ability p(s |y,Θ∗) represents optimal inference given a data point y. The parameters Θ∗

given a set of N data points Y = {y1, . . . ,yN} are given by the maximum likelihood
parameters Θ∗ = argmaxΘ{p(y |Θ)}.

We use EM to to find the maximum likelihood solution of the parameters. As described
in Chapter 1.2, EM is an iterative algorithm to compute the maximum likelihood estimate
of the model parameters of a given graphical model (see e.g. (Dempster et al., 1977; Neal
and Hinton, 1998)). EM algorithm iterates between the E-step (1.6) and M-step (1.7)
where the posterior distribution is optimized, followed by the the optimization model
parameters, respectively. The parameter updates in the M-step usually depend just on a
small number of expectations of the posterior, 〈g(s)〉p(s |y (n),Θ) =

∑
s p(s |y (n),Θ) g(s).

Although g(s) is usually an elementary function of the latent variables s, the expectations
are the computationally demanding part of EM optimization and must be approximated
with some method. The EM iterations can be associated to neural processing by relat-
ing the E-step to the assumption that neural activity represents the posterior over hidden
variables, and relating the M-step equations to long-term changes in synaptic weights due
to synaptic plasticity. Here we will combine two approximations of the expectations in
EM and show that these approximations are analogous to prominent models of neural
processing.

18 CHAPTER 2. SELECT AND SAMPLE

2.2.1 Selection

Feed-forward processing has frequently been discussed as an important component of
neural processing (Rosenblatt, 1958; LeCun et al., 1989; Riesenhuber and Poggio, 1999,
2002). One perspective on this early componenet of neural activity is as a preselection of
candidate units (variables, hypotheses, etc.) for a given sensory stimulus ((Körner et al.,
1999; Lee and Mumford, 2003b; Yuille and Kersten, 2006) and many more), with the
goal of reducing the computational demand of an otherwise too complex computation. In
the context of probabilistic approaches, we can emulate neural feed-forward processing
with preselection using Expectation Truncation (ET; described in 1.2). After preselec-
tion of relevant variables, the posterior distribution can be approximated by a truncated
distribution over a reduced set of latent states:

p(s(n)|y(n),Θ)

≈ qn(s(n); Θ) =
p(s(n),y(n)|Θ) I(s(n) ∈ Kn)∑

s ′(n)∈Kn

p(s ′(n),y(n)|Θ)
, (2.1)

where Kn contains the latent states of the relevant variables for data point y(n), and I(s ∈
Kn) = 1 if s ∈ Kn and 0 otherwise. Since for many applications the posterior mass is
concentrated in small volumes of the state space, the approximation quality can stay high
even for relatively small sets Kn. Indeed, this property is observed to hold for many types
of data in the auditory, visual or general pattern recognition domains. The expectations in
the M-step can be computed using the truncated posterior distribution:

〈g(s)〉p(s |y (n),Θ) ≈ 〈g(s)〉q(n)(s;Θ) =

∑
s∈Kn

p(s,y (n) |Θ) g(s)∑
s ′∈Kn

p(s ′,y (n) |Θ)
. (2.2)

This approximation allows the expectations to be computed over the smaller state space
Kn, leading to a reduction in computational demands. As discussed in the Introduction
Chapter 1.2, the setKn needs to be carefully and efficiently selected prior to the computa-
tion of expectations in the E-step for significant acceleration of EM. A selection function
Sh(y,Θ) preselects latent variables sh that are most likely to have contributed to a data
point y (n). The reduced set of preselected latent variable states Kn is defined as follows:
Kn = {s | for all h 6∈ I : sh = 0}, where I contains the H ′ � H indices with the highest
values of a selection function Sh(y,Θ) (compare Figure 2.1).

2.2. A SELECT AND SAMPLE APPROACH TO APPROXIMATE INFERENCE 19

A exact EM

∑
s

p(s |y)g(s)g(smap)

MAP estimate

smax

∑
s∈Kn

p(s |y)g(s)

preselection

B

1

M

M∑
m=1

g(s)

sampling select and

1

M

M∑
m=1

g(s)

sample

CSh(y (n))

Kn

s1 sH

y1 yD

s1 sH

y1 yD

Wdh Wdh

selected units

selected units

with
s(m) ∼ p(s |y (n),Θ)

with
s(m) ∼ q(n)(s; Θ)

Kn

Figure 2.1: A Simplified illustration of the posterior mass and the respective regions used by
each approximation to compute the expectations 〈g(s)〉. B Graphical model showing full connec-
tions Wdh between the data point y(n) and latent variables/units s = (s1, . . . , sH) and how H ′

variables are selected from H to form a given state set Kn and Wdh is affected accordingly. C
Illustrates how sampling draws samples from this reduced set for the Select and Sample approach
(with e.g. the right-most posterior mass in A).

2.2.2 Sampling

An alternative way to approximate the expectations in Equation 2.2 is by sampling from
the posterior distribution, and using the samples to compute the average:

〈g(s)〉p(s |y (n),Θ) ≈ 1
M

M∑
m=1

g(s(m)) with s(m) ∼ p(s |y(n),Θ), (2.3)

where M denotes the total number of samples drawn for a data point y (n). The chal-
lenging aspect of this approach is to efficiently draw samples from the posterior. In large
dimensional sample space, this is mostly done by Markov Chain Monte Carlo (MCMC).
This class of methods draws samples from the posterior distribution such that each subse-
quent sample is drawn relative to the current state, and the resulting sequence of samples
form a Markov chain. A new sample is accepted with a probability of max(1, p(s new)

p(s current)
).

In the limit of a large number of samples, MCMC methods are theoretically able to rep-
resent any probability distribution. However, the number of samples required in large
dimensional space can be very large (Figure 2.1A, sampling). See (Neal, 1993) for an
extensive review of MCMC methods for probabilistic inference.

20 CHAPTER 2. SELECT AND SAMPLE

2.2.3 Select and Sample

While preselection and sampling seem to be very different in nature, their formulations
as approximations to expectations (2.2) allow for a straight-forward combination of both
approaches: Given a data point, y(n), we first approximate the expectation (2.2) using the
variational distribution q(n)(s; Θ) as defined by preselection (2.2). Second, we approxi-
mate the expectations with respect to q(n)(s; Θ) using sampling. The combined approach
is thus given by:

〈g(s)〉p(s |y (n),Θ) ≈ 〈g(s)〉q(n)(s;Θ) ≈ 1
M

M∑
m=1

g(s(m)) with s(m) ∼ q(n)(s; Θ) (2.4)

where s(1) to s(M) denote samples from the truncated distribution q(n). Instead of drawing
from a distribution over the entire state space, approximation (2.4) requires only samples
from a potentially very small subspace Kn (Figure 2.1). In the subspace Kn, most of the
original probability mass is concentrated in a smaller volume, and thus we expect MCMC
algorithms to perform more efficiently, as they need to explore a smaller volume, short-
ening burn-in times, and reducing the number of samples needed to trace the distribution.
Compared to selection alone, the Select and Sample approach will represent an increase
in efficiency as soon as the number of samples required for a good approximation is less
then the number of states in Kn. In the following, we will systematically investigate the
computational efficiency of the Select and Sample approach in comparison with selection
and sampling alone using concrete examples of generative models with real-world scales.

2.3 Sparse Coding: An Example Application

To explore the efficiency and performance properties of the Select and Sample approach
as well as to study its biological plausibility, we apply it to a sparse coding model of
images. The choice of a sparse coding model has numerous advantages. First, it is a
non-trivial model that has been extremely well-studied in machine learning research, and
for which efficient algorithms exist (e.g. (Lee et al., 2007; Mairal et al., 2010)). Second,
it has become a standard (albeit somewhat simplistic) model of the organization of recep-
tive fields in primary visual cortex (Olshausen and Field, 1996; van Hateren and van der
Schaaf, 1998; Ringach, 2002). Here we consider a discrete variant of this model known
as Binary Sparse Coding (BSC; (Henniges et al., 2010; Lücke and Eggert, 2010), also
compare (Haft et al., 2004)), which has binary hidden variables but otherwise the same
features as standard sparse coding versions. The generative model for BSC is expressed
by

2.3. SPARSE CODING: AN EXAMPLE APPLICATION 21

p(s|π) =
H∏
h=1

πsh
(
1− π

)1−sh , p(y|s,W, σ) = N (y;W s, σ2I) , (2.5)

where W ∈ RD×H denotes the basis vectors between s and y, and π parameterizes the
sparsity of the Bernoulli prior p(s|π) on s, which we denote B(s; π).

The M-step updates of the BSC learning algorithm (see e.g. (Lücke and Eggert, 2010))
are given by:

W new =
(N∑
n=1

y(n) 〈s 〉Tq(n)

) (N∑
n=1

〈
s sT

〉
q(n)

)−1
, (2.6)

(σ2)new = 1
ND

∑
n

〈∣∣∣∣y(n) −W s
∣∣∣∣2〉

q(n)
, πnew = 1

N

∑
n

|
〈
s
〉
q(n) |, (2.7)

where |x| = 1
H

∑
h

xh.

The only expectations needed for the M-step are thus 〈s〉q(n) and
〈
ssT
〉
q(n) .

We will compare inference and learning using different methods:

BSCexact. An EM algorithm without approximations is obtained if we use the exact pos-
terior for the expectations: q(n) = p(s |y (n),Θ). We will refer to this exact algorithm as
BSC exact. While directly computable, the expectations for BSC exact require sums over
the entire state space, i.e. over 2H terms. For large numbers of latent dimensions BSC exact

is thus intractable.

BSCselect. An algorithm that more efficiently scales with the number of hidden dimensions
is obtained by applying preselection. For the BSC model we use q(n) as given in (2.2) and
Kn = {s | (for all h 6∈ I : sh = 0) or

∑
h sh = 1}. Note that in addition to states as in

(1.11) we include all states with one non-zero unit (all singletons). Including them avoids
EM iterations in the initial phases of learning that leave some basis functions unmodified
(see (Lücke and Eggert, 2010)). As selection function Sh(y (n)) to define Kn we use:

Sh(y (n)) =
WT

h y (n)

||Wh||2
with ||Wh||2 =

√∑D
d=1(Wdh)2 . (2.8)

A large value of Sh(y (n)) strongly indicates that y (n) contains the basis function Wh

as a component (see Figure 2.1C). Note that (2.8) can be related to a deterministic ICA-
like selection of a hidden state s(n) in the limit case of no noise (compare (Lücke and
Eggert, 2010)). Further restrictions of the state space are possible but require modified

22 CHAPTER 2. SELECT AND SAMPLE

M-step equations (see (Lücke and Eggert, 2010; Henniges et al., 2010)), which will not
be considered here. Selection functions for more complex models will be thoroughly
addressed in Chapter 4.

BSCsample. An alternative non-deterministic (stochastic) approach can be derived us-
ing Gibbs sampling. Gibbs sampling is an MCMC algorithm which systematically ex-
plores the sample space, considering each dimension individually, conditioning the ac-
ceptance of a new sample based on values of the remaining samples. In other words,
the transition probability from the current sample to a new candidate sample is given by
p(snew

h |s current
\h). In our case of a binary sample space, this equates to selecting one random

axis h ∈ {1, . . . , H} and toggling its bit value (thereby changing the binary state in that
dimension), leaving the remaining axes unchanged. Specifically, the posterior probability
computed for each candidate sample is expressed by:

p(sh = 1 | s\h,y) =
p(sh = 1, s\h,y)β

p(sh = 0, s\h,y)β + p(sh = 1, s\h,y)β
, (2.9)

where β is used to smooth out the posterior distribution. To ensure an appropriate mixing
behavior over a wide range of σ (note that σ is a model parameter that changes with learn-
ing), we define β = T

σ2 , where T is an annealing temperature parameter that is set manu-
ally and is selected such that sufficient mixing of the MCMC chains is achieved. A chain
is referred to as well mixed when the sampler has adequately explored the state space and
the samples can be considered to have been drawn from the desired target distribution (i.e.
the proposal distribution converges to the stationary distribution), and annealing is often
used to speed up mixing times (see e.g. (Neal, 1993)). The samples drawn by applying
the described procedure can then be used to approximate the expectations of the sufficient
statistics in the parameter Equations (2.6) and (2.7) using Equation (2.3).

BSCs+s. The EM learning algorithm given by combining selection and sampling is ob-
tained by applying (2.4). First note that inserting the BSC generative model into (2.1)
results in:

q(n)(s; Θ) =
N (y;W s, σ2I)BKn(s; π) I(s ∈ Kn)∑
s ′∈Kn

N (y;W s ′, σ2I)BKn(s ′; π)
(2.10)

where BKn(s; π) =
∏

h∈I π
sh (1 − π)1−sh . The remainder of the Bernoulli distribution

cancels out. If we define s̃ to be the binary vector containing all selected variables of
s, and if W̃ ∈ RD×H′ contains all basis functions of the selected units, we observe that
the distribution is equal to the posterior with respect to a BSC generative model with H ′

2.3. SPARSE CODING: AN EXAMPLE APPLICATION 23

instead of H hidden variables:

p(s̃ |y,Θ) =
N (y; W̃ s̃, σ2IH′)B(s̃; π)∑

s̃′

N (y; W̃ s̃′, σ2IH′)B(s̃′; π)
= p(s̃ |y,Θ)

Instead of drawing samples from q(n)(s; Θ) we can thus draw samples from the exact
posterior with respect to the BSC generative model with H ′ dimensions. The sampling
procedure for BSC samplecan thus be applied simply by ignoring the non-selected dimen-
sions and their associated parameters. For different data points different latent dimensions
will be selected such that averaging over data points can update all model parameters. For
selection we again use selection functions (2.8) and again define Kn similar to (1.11):

Kn = {s | for all h 6∈ I : sh = 0} , (2.11)

where I contains the H ′-2 indices h with the highest values of a selection function
Sh(y,Θ) and two randomly selected dimensions (drawn from a uniform distribution over
all non-selected dimensions). The two randomly selected dimensions fulfill the same
purpose as the inclusion of singleton states for BSC select. This prevents the possible prop-
agation of errors from q(n) continuously assigning small probabilities to a variable sh in
early EM iterations. Preselection and Gibbs sampling on the selected dimensions define
an approximation to the required expectations (2.2) and result in an EM algorithm referred
to as BSC s+s.

Complexity. Collecting the number of operations necessary to compute the expectation
values for all four BSC cases, we arrive at

O
(
NS(D︸︷︷︸

p(s,y)

+ 1︸︷︷︸
〈s〉

+ H︸︷︷︸
〈ssT 〉

)
)

(2.12)

where S denotes the number of hidden states that contribute to the calculation of the ex-
pectations. For the approaches with preselection (BSC select, BSC s+s), all the calculations
of the expectations can be performed on the reduced latent space; therefore the H is re-
placed by H ′. For BSC exactthis number scales exponentially in H: Sexact = 2H , and in in
the BSC selectcase, it scales exponentially in the number of preselected hidden variables:
Sselect = 2H

′ . However, for the sampling based approaches (BSC sampleand BSC s+s), the
number S directly corresponds to the number of samples to be evaluated and is obtained
empirically. As we will show later, Ss+s = 200×H ′ is a reasonable choice for the interval
of H ′ that we investigate in this work (1 ≤ H ′ ≤ 40).

24 CHAPTER 2. SELECT AND SAMPLE

A B

C

1 50EM step

L
(Θ

) BSC exact BSC select BSC sample BSC s+s

1 50EM step 1 50EM step 1 50EM step

Figure 2.2: Experiments using artificial bars data generated withH = 12 bars (hidden variables)
and D = 6× 6 pixels (observed variables). Dotted line indicates the ground-truth log likelihood
value. A Random selection of the N = 2, 000 training data points y (n) B Learned basis functions
Wdh after an successful training run C Development of the log likelihood over a period of 50 EM
steps for all 4 investigated algorithms where different color plots are different runs of the same
algorithm.

2.4 Experiments

We compare the Select and Sample approach with selection and sampling applied indi-
vidually on different data sets. In all experiments evaluating the two algorithms that use
sampling, we draw 20 independent chains that are initialized at random states in order to
increase the mixing of the samples. Also, of the samples drawn per chain, 1

3
were used to

as burn-in samples, and 2
3

were retained samples.

2.4.1 Artificial Data

Before we apply the Select and Sample approach to large scale learning on image patches,
we investigate its convergence properties on artificial data sets where ground-truth is avail-
able. As the following experiments were run on a small scale problem, all four algorithms
(BSC exact, BSC select, BSC sampleand BSC s+s) can be applied and compared. Further-
more, for all the experiments we computed the exact likelihood for each EM step.

Data for these experiments consisted of images generated with H = 12 ground-truth
basis functions Wgt

h in the form of horizontal and vertical bars on a D = 6 × 6 = 36

pixel grid. Each bar was randomly assigned to be either positive (W gt
dh ∈ {0.0, 10.0})

or negative (W gt
dh′ ∈ {−10.0, 0.0}). N = 2, 000 data points y (n) were generated by

linear combining these basis functions (see e.g. (Hoyer, 2002)). Using a sparseness value
of πgt = 2

H
resulted in, on average, two active bars per data point. According to the

model, we added Gaussian noise (σgt = 2.0) to the data (Figure 2.2 A). We applied all
algorithms to the same data set and monitored the exact likelihood while these algorithms
converged over a period of 50 EM steps (Figure 2.2 C). Although the calculation of the
exact likelihood requiresO(N2H(D+H)) operations, this is still feasible for such a small
scale problem. When running models using preselection (BSC selectand BSC s+s), we set

2.4. EXPERIMENTS 25

C

L
(Θ

)

#samples
400×H′100×H′

A B
S = 200×H′

-5.47e7

-5.53e7

B
SC

se
le
ct

B
SC

sa
m
p
le

B
SC

s+
s

×40

107

106

105

104

103

#
no

of
st

at
es

D

-5.51e7

-5.49e7

Figure 2.3: Experiments on D = 26 × 26 image patches: A A set of 10 randomly chosen image
patches after DoG preprocessing. B A selection of the learned basis functions for H = 800, H ′ =
20 and number of samples set to 200 × H ′. See the Supplementary Material 2.6 for the full set
of basis functions. C The final approximate log likelihood then running the BSC s+sfor various
number of samples drawn per data point. D Assuming H = 800 and H ′ = 20, the number of
hidden states to be evaluated are shown.

H ′ to 6, effectively halving the number of hidden variables participating in the calculation
of the expectations. For BSC sample, we drew Ssample = 200×H = 2400 samples from the
posterior p(s |y (n)) of each data point. For BSC s+s, we drew Ss+s = 200 ∗H ′ = 1, 200

samples from the posterior of each data point. To ensure an appropriate mixing behavior,
we furthermore set the annealing temperature to T = 50. In all these experiments we
initialized the basis functions to the data mean plus Gaussian noise, the prior probability to
πinit = 1

H
and the data noise to the variance of the data. All algorithms recover the correct

set of bases functions in > 50% of the trials, and the sparseness prior π and the data
noise σ with high accuracy. Comparing the computational costs of algorithms shows the
benefits of preselection already for this small scale problem: While BSC exactcalculates
the expectations using the full set of 2H = 4096 hidden states, BSC selectonly considers
2H
′

+ (H − H ′) = 70 states. The pure sampling based approaches performs 2, 400

evaluations while BSC s+srequires 1, 200 evaluations.

2.4.2 Natural Image Patches

To demonstrate the applicability of the Select and Sample approach to larger scale prob-
lems, we tested our approach natural image patches. We extracted N = 40, 000 patches
of size D = 26× 26 = 676 pixels from the van Hateren image database (van Hateren and
van der Schaaf, 1998) 1, and preprocessed them using a Difference of Gaussians (DoG)
filter, which approximates the sensitivity of center-on and center-off neurons found in the
early stages of the mammalian visual processing. Filter parameters where chosen as in
(Lücke, 2009; Puertas et al., 2010). The annealing temperature was set to T = 20. In all

1We restricted the set of images to 900 images without man-made structures (see Figure 2.3A). The
brightest 2% of the pixels were clamped to the maximal value of the remaining 98% (influences of light-
reflections were reduced this way)

26 CHAPTER 2. SELECT AND SAMPLE

following simulations, we used initialization procedure described earlier and ran 100 EM
iterations to ensure proper convergence.

We first ran a series of experiments in order to investigate the effect of the number of
samples used on the approximated log likelihood for values ofH ′ ranging between 12 and
36, and settingH = 800. We observe with BSC s+sthat 200 samples per hidden dimension
(total samples = 200×H ′) are sufficient in that the final value of the likelihood after 100

EM steps begins to saturate. Particularly, increasing the number of samples does not
increase the likelihood by more than 1% In Figure 2.3C we show the curve for H ′ = 20,
but we obseverd the same trend for all other values of H ′. Furthermore, we tested this
number of samples (200×H) in the pure sampling case (BSC sample) in order to monitor
the likelihood behavior. We observed two consistent trends: 1) the algorithm did not
converge to a high-likelihood solution, and 2) even when initialized at solution with high
likelihood, the likelihood always decreases. This example demonstrates the gains of using
Select and Sample above pure sampling: while BSC s+sonly needs 200 × 20 = 4, 000

samples to robustly reach a high-likelihood solutions, by following the same regime with
BSC sample, not only did the algorithm poorly converge on a high-likelihood solution, but
it used 200× 800 = 160, 000 samples to do so (Figure 2.3D).

2.4.3 Large Scale Experiment on Natural Image Patches

Comparison of the above results shows that the most efficient algorithm is obtained by
a combination of preselection and sampling, our Select and Sample approach (BSC s+s),
with no or only minimal effect on the performance accuracy of the algorithm – as de-
picted in Figure 2.2 and 2.3. This efficiency allows for applications to much larger scale
problems than would be possible by individual approximation approaches (Figure 2.3 and
2.5). To demonstrate the efficiency of the combined approach, we applied BSC s+sto the
same image data set, but with a very high number of observed and hidden dimensions. We
extracted from the database N = 500, 000 patches of size D = 40 × 40 = 1, 600 pixels.
BSC s+swas applied with the number of hidden units set to H = 1, 600 and with H ′ = 34.
Using the same conditions as in the previous experiments (notably S = 200∗H ′ = 6, 800

samples and 100 EM iterations) we again obtain a set of Gabor-like basis functions, ex-
amples of which are shown in Figure 2.4A. Figure 2.4B shows the scaling behavior of
models BSC selectand BSC s+sin terms of the number of states the algorithm needs to eval-
uate, where the former scales exponentially and the latter scales linearly. We can see a
great difference in necessary computational resources of these models at the considered
preselection parameterization, H ′ = 34. To our knowledge, the presented results repre-
sent the largest application of sparse coding with a reasonably complete representation of
the posterior.

2.5. DISCUSSION 27

A B

BSCselect : S = 2H
′

BSCs+s : S = 200×H′

400 H′
100

1012

of
states

34

104

108

Figure 2.4: Results of the large-scale experiment of BSC s+son N = 500, 000 image patches with
D = 40× 40 = 1, 600 pixels, H = 1, 600 hidden dimensions, and H ′ = 34. A Random selection
of the learned basis functions Wdh, exhibiting Gabor-like features. B Corresponding complexity
in terms of the most costly operations for both of the preselection models consididered, namely, the
number of states the algorithm needs to evaluate. Here BSC selectscales exponentially, whereas
BSC s+sscales linearly. Note the difference in complexity at the preselection parameterization,
H ′ = 34.

2.5 Discussion

In this Chapter, we introduced a novel efficient method for inference and unsupervised
learning in probabilistic models that could plausibly be implemented in neural circuits
which would allow the brain to use large scale models of the sensory input to make sense
of its environment. This could be plausibly realized using two mechanisms that had been
independently suggested in the context of a the statistical framework for perception: feed-
forward input preselection (Lücke and Eggert, 2010), and sampling (Lee and Mumford,
2003a; Hoyer, 2003; Fiser et al., 2010). We showed that the two seemingly contrast-
ing approaches can be combined based on their interpretation as approximate inference
methods, resulting in a considerable increase in computational efficiency.

We investigated the applicability and efficiency of Select and Sample analytically and
numerically using sparse coding model of natural images—a standard model for neural
response properties in V1 (Olshausen and Field, 1996; van Hateren and van der Schaaf,
1998). Comparisons to exact inference, preselection alone, and sampling alone showed
dramatically improved scaling behavior with the number of observed and hidden dimen-
sions. To the best of our knowledge, the only other sparse coding implementation applied
to a comparable problem size (D = 20×20, H = 2, 000) assumed a Laplace prior, which
results in a simple uni-modal posterior, and used a MAP approximation, which further
reduces the posterior to a single point, and is known to produces biased parameters (Lee
et al., 2007). Our method is able to achieve convergence while still representing a sig-

28 CHAPTER 2. SELECT AND SAMPLE

nificant part of the posterior, which is crucial for learning parameters like data noise and
sparsity, and to correctly act when faced with uncertain input (Rao et al., 2002; Trommer-
shäuser et al., 2008; Fiser et al., 2010).

Concretely, we used a sparse coding model with binary latent variables, mainly because it
offered a systematic comparison of Select and Sample with exact EM for low-dimensional
problems, but we will show an application to a sparse coding model with continuous vari-
ables in the next Chapter. In the model, the selection step results in a simple, local and
neurally plausible integration of input data, given by (2.8). Sampling was implemented
using the Gibbs sampling method, which is also neurally plausible – neurons can individ-
ually sample their next state based on the current state of the other neurons as transmitted
through recurrent connections (Berkes et al., 2011b).

The selection-based EM algorithms frequently encountered the problem of propagating
errors due to q(n) continuously assigning small probabilities to a variable sh in early EM
iterations. This lead to the algorithm not being able to converge (i.e. verified on ground-
truth data). This would occur because the optimization of q(n) in early iterations of EM
starts from randomly initialized sh. Unfortunately this meant that selection-based EM
would “get stuck", assigning not only arbitrarily small probabilities to a variable sh, but
also higher probability values to sh that were selected due to an initially high probability
value. Those sh would therefore always be deemed relevant, regardless of their true rele-
vancy. We solved this problem by randomly selecting a few extra hidden indices H ′ + H′

10

to give the algorithm an opportunity to evaluate possibly unused variables which might
be relevant for y(n).

We expect the Select and Sample strategy to be widely applicable to machine learning
models whenever the posterior probability mass is concentrated in a small subspace of the
entire latent space. Furthermore, we expect that more sophisticated preselection mecha-
nisms and sampling schemes to lead to further reduction in computational costs. Both of
these ideas will be explored in the subsequent Chapters.

2.6. SUPPLEMENTARY MATERIAL 29

2.6 Supplementary Material

Large Scale Sparse Coding Application using Select and Sample

(a) Set of W bases functions

(b) Log likelihood (c) Data noise σ2 (d) Sparsity πH ′

Figure 2.5: Large scale results for Select and Sample with Binary Sparse Coding (BSC s+s) ran
for 100 EM iterations: applied to N = 500, 000 image patches of size D = 40× 40 = 1.600 with
H = 1600 hidden variables and H ′ = 36 relevant preselected variables. All other parameters
were set as described in 2.4. The figure shows the (a) the learned basis functions Wh, (b)
approximated log likelihood, (c) data noise (c) and sparsity.

Chapter 3

Nonlinear Spike-and-Slab Sparse
Coding for Intepretable Image
Encoding

In this Chapter, we use the Select and Sample approach from Chapter 2, but apply it
to a more complicated Sparse Coding model. We introduce a novel model, Nonlinear
Spike-and-slab sparse coding, for which, due to its intractabilities, we modify Select and
Sample and derive a new optimization method using exact Gibbs sampling with latent
variable preselection.

The work presented hierin can be found in the following publications: Shelton et al.
(2012b,a, 2013, 2015).

3.1 Introduction

Many natural signals, such as visual data, exist in a high-dimensional space. Understand-
ing the structure of visual data is a challenging task that is often approached by forming
parametric models of the data following some principles of optimality, in order to learn
something about the data’s content and composition. As many signals have a low intrinsic
dimensionality, in this chapter we focus on the domain of sparse coding models to address
the task of image modelling. The basic idea behind the sparsity principle is to represent
a signal – such as an image – as a combination of few basis functions or features. With
roots in signal processing, it is often thought that a model assuming or enforcing spar-
sity can recover the intrinsic signal dimensions and therefore better represent the relevant

30

3.1. INTRODUCTION 31

information content in the signal (e.g. (Mallat, 2008; Eldar and Kutyniok, 2012)). Fur-
thermore, one would expect that if the algorithm learns meaningful hidden structure of
the signal, then this approach would be successful at many data-driven tasks. When an
algorithm can extract and represent the relevant information content from a signal that not
only follows the generating process of that data but can also be easily interpreted in the
context of the task at hand, we refer to this as interpretable data encoding.

Following early physiological recording studies on simple cells in the visual cortex (Hubel
and Wiesel, 1959), sparse coding became popular as a model of the visual data encoding
process in the mammalian primary visual cortex (Olshausen and Field, 1996) and has
now become not only the standard model to describe coding in simple cells, but also a
very popular feature learning algorithm (e.g. (Goodfellow et al., 2013; Lee et al., 2007)).
Formally, sparse coding (which will be referred to as ‘SC’) assumes that each image
(also called an ‘observation’, or observed variables) y = (y1, . . . , yD)T is associated
with a sparse vector of latent variables s = (s1, . . . , sH)T (also called latent ‘causes’ or
coefficients of the data), where D and H denote the dimensionality of the observed image
and the latent variable space, respectively. In the setting of visual data, the sparse latent
vector s describes the set of the possible causes of an observed image and is associated
with a set of image components, or dictionary elements, W ∈ RD×H (low-level image
components, e.g. edge-like structures) where the absence of such an image component is
associated with sh = 0. In this way, sparsity means that most of the coefficients sh in s

are zero or close to zero.

The standard linear sparse coding problem is formulated as follows:

loss(y,W) := min
s

1

2
||y −Ws||22 + a||s||1, (3.1)

with the objective to minimize the loss between the image y and its linear reconstruc-
tion/estimation Ws (or equivalently

∑
h shWh where W is theD×H matrix of Wh dic-

tionary elements/components), with a penalty on the l1-norm of the vector s. The penalty
is controlled by a regularization parameter a, which dictates how sparse the coefficients s
in the reconstruction of y will be. Objective (3.1) and associated optimization algorithms
are often referred to as basis pursuit (Chen et al., 1998) and also appear in nonlinear
programming literature (Mangasarian, 1969; Han and Mangasarian, 1979). Additionally,
objective (3.1) is associated with a related learning problem called the Lasso (Tibshirani,
1996), for which W is fixed and for which an expectation over squared error terms is
minimized subject to an l1 penalty.

32 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

Probabilistically, linear SC can be formulated as a generative model:

p(y |Θ) =

∫
s

p(y | s,Θ) p(s |Θ) ds, (3.2)

where the latent causes are characterized by p(s |Θ) with a sparse prior distribution. The
observation/image described by p(y | s, Θ) is typically a Gaussian distribution with a
mean µ =

∑
h shWh, i.e. centered at the linear superposition of components Wh ∈ RD.

If the Laplace distribution is used as prior distribution, it can be shown that the minimiza-
tion of objective (3.1) with respect to the dictionary elements corresponds to EM learning
using the maximum a-posteriori (MAP) approximation for the posterior (e.g. (Murphy,
2012)). For dictionary learning, the formulation of objective (3.1) is often the method
of choice, and the focus is on efficient optimization of the dictionary. With these ap-
proaches, no prior parameters can be learned directly and the sparsity penalty, therefore,
has to be set by hand or it has to be determined by cross-validation in another optimiza-
tion loop. Furthermore, MAP estimates of the posterior can lead to a relatively coarse
approximation, which has motivated improved probabilistic approaches for the standard
model (Opper and Winther, 2005; Seeger, 2008).

The focus of this work is to investigate a new sparse coding model that forms a more real-
istic image model than the standard linear model with Laplace prior. After motivating and
defining the model, we will systematically evaluate the differences to standard sparse cod-
ing. The problem setting we focus on is illustrated with the toy example in Figure 3.1. One
can see that visual components (such as edges) are either present or absent (i.e. coefficient
sh = 0) in an image. This however points to the first challenge that standard models for
sparse coding face: standard models using a Laplace or Cauchy prior distribution, which
do not intrinsically represent exact zeros, can only either yield coefficients with exact ze-
ros as an artifact of the optimization that artificially enforcing the coefficients to be zero
(see e.g. (Seeger, 2008; Lee et al., 2007) for examples). These distributions are referred
to as “weakly sparse", as they have no coefficients actually at zero, but many very close
to zero (Mohamed et al., 2012). Other models, with use of a binary prior distribution,
can represent exact zeros (to model e.g. the absence of a visual component with sh = 0)
without need for optimization techniques to induce them. These models cannot however
model the range of intensities that the image components may manifest (e.g. when the
component is present, it is represented by sh = 1). An alternative and recently very
popular prior is the spike-and-slab distribution (e.g. (Lázaro-gredilla and Titsias, 2011;
Mohamed et al., 2012; Goodfellow et al., 2012; Sheikh et al., 2014)), which is a distri-
bution consisting of a discrete binary part and a continuous Gaussian part (see the first
column in Figure 3.2 for an illustration of the spike-and-slab and Laplace priors). This
prior can model not only the absence/presence of a component (via the binary ‘spike’) but

3.1. INTRODUCTION 33

Figure 3.1: Toy example illustrating the problem setting: approximating occlusions in im-
ages. Given an image patch with occlusions (A), assume both the linear and nonlinear sparse
coding models were given the true generating dictionary elements (B) and the task is for each
model to use a sparse set of these to generate a reconstruction of the patch (C). A Example
natural image with one patch to be reconstructed by the models. B 10 ground-truth dictionary
elements, assumed to be known and with only 2 of 10 having generated the image patch. C Image
reconstruction using the sparse dictionary set of the 2 models: the standard linear sparse coding
model and the nonlinear spike-and-slab SC model. The linear sum leads to inaccurate pixel es-
timates when components overlap, whereas the nonlinear max aims to approximate this type of
data more realistically in this scenario. Furthermore, the spike-and-slab prior (shown here for the
the nonlinear model) allows the model to adapt the intensity of each image component to match
what it observed in the data.

also the visual intensity of that component (via the ‘slab’). Second, the standard model
assumes that visual components linearly superimpose to form an image, although objects
do not actually elicit summed intensity values when they happen to occlude each other.
In this setting, when evaluating the pixel intensities of two overlapping components, the
standard linear model would sum the two pixels, which poorly estimates the intensity,
whereas the max infers that the pixel with the maximal intensity is occluding the other,
offering a better estimate, illustrated in Figure 3.1C. Despite these two modelling caveats,
the most work on SC models focuses on efficient inference of the optimal parameters for
the linear model (e.g. (Seeger, 2008; Lee et al., 2007)) and not in assessing the model as-
sumptions themselves. The standard linear model form offers mathematical convenience
for inference, namely allowing the use of convex approaches (i.e. the posteriors over latent
variables have only one mode, allowing for efficiency/accuracy of maximum a posteriori
(MAP) estimations). Consequently, the standard model has continued to use a Laplace
prior with a linear superposition, because changing the prior or changing the superposi-
tion assumption induces complex and multimodal posteriors and correspondingly poses
a challenge for MAP estimates due to many locally optimal solutions. As a result, each
proposed modification of the standard model has so far only been investigated in turn. An
illustration of both the linear and nonlinear models, both the Laplace and spike-and-slab
prior distributions, and the resulting posterior distributions from either combination of
model and prior is shown in Figure 3.2.

This work proposes a novel sparse coding model that combines both of these improve-

34 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

Figure 3.2: Illustration of choice of prior distribution and multimodality in the latent space.
A H=2-dimensional spike-and-slab and Laplace priors over latent variables and the multimodal
posterior distribution induced by these priors for both linear and nonlinear data likelihoods.

ments – a spike-and-slab distribution and nonlinear max combination of components –
in order to form a more realistic model of images. For our main technical contribution,
we optimize our model by using a combined approximate inference approach with pres-
election of latent variables (for truncated approximate EM (Lücke and Eggert, 2010)) in
combination with Gibbs sampling (Shelton et al., 2011b). Importantly, as we expect to see
the most salient differences between the models when occlusions are present, several sets
of experiments focus on natural and artificial occlusion-rich data sets where we consider
the task of dictionary learning and image reconstruction.

In our experiments we show that we can efficiently train this nonlinear model and perform
inference assuming a reasonably high number of observed and latent variables. First, we
show on artificial data that the method efficiently and accurately infers all model param-
eters, including data noise and sparsity. Next, we compare our nonlinear model to a
state-of-the-art linear model on occlusion-rich data sets for the task of dictionary learning
and image reconstruction on both artificial data with controlled forms of sparse structure
as well as natural data. With experiments comparing the reconstruction of images by the
two models, we show that the nonlinear model extracts/uses a sparse set of interpretable,
holistic components that match the generating process, whereas the linear model (at all
sparsity levels) uses components which are difficult to interpret and not aligned with the
generating process. Finally, with experiments on image patches, we show that our model
is consistent with in vivo neural recordings and learns image components with which lin-
ear models have struggled (Ringach, 2002; Bornschein et al., 2013). With these data we

3.2. MODEL: NONLINEAR SPIKE-AND-SLAB SPARSE CODING 35

also show that our model is consistent in the sense that the average posterior over the
latent variables is approximately equal to the prior.

The Chapter is organized as follows: first, the proposed model will be presented, second,
the details of the inference method will be described, third, all experimental results will
be presented, and finally, the results will be discussed.

3.2 Model: Nonlinear Spike-and-Slab Sparse Coding

We formulate the data generation process as the probabilistic generative model:

p(yd | s,Θ) = N (yd; max
h
{shWdh}, σ2). (3.3)

Here, in contrast to the standard linear formulation in (3.2), the likelihood contains the
nonlinear term maxh{shWdh} instead of the linear

∑
h shWdh (the maxh which considers

all H latent components and takes the h yielding the maximum value for shWdh). Also,
the latent variable sh is drawn from a spike-and-slab distribution given by sh = bhzh,
where bh is drawn from a Bernoulli distribution and zh is drawn from a Gaussian distri-
bution (B and N , respectively), and is parameterized by:

p(bh |Θ) = B(bh; π) = πbh (1− π)1−bh (3.4)

p(zh |Θ) = N (zh; µpr, σ
2
pr), (3.5)

The columns of the matrix W = (Wdh) are the dictionary elements/generative fields,
(Wh)

H
h=1, with one Wh associated with each latent variable sh. We denote the set of all

parameters with Θ = (π, µpr, σpr,W, σ).

For inference and in order to optimize the parameters Θ of this model, we are interested
in working with the posterior over the latent variables given by

p(s|y, θ) =
p(y|s, θ) p(s|θ)∫

s′
p(y|s′, θ) p(s′|θ) ds′

. (3.6)

Identical to the standard sparse coding formulation in Equations (3.1) and (3.2), our model
assumes independent latent variables and Gaussian-distributed observations given the la-
tent variables. In contrast to the standard formulation, the latents are not distributed ac-
cording to a Laplace prior and the components (i.e. coefficients, dictionary elements, or
generative fields) are not combined linearly. Figure 3.1 contains a toy illustration of part

36 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

of the generative process and model differences between the standard linear model and
nonlinear model. Figure 3.1A shows an example natural image, exhibiting naturally oc-
curring occlusions of branches and twigs, from which a patch has been extracted in order
to illustrate the effects of each model’s (non)linearity assumption. Figure 3.1B shows
examples of how corresponding generating dictionary elements could look. For the sake
of simplicity, this example does not incoorporate the learning process, and assumes each
model is simply given these components and instructed which sparse set of components
in 3.1B generated the image patch in 3.1A. Figure 3.1C shows how the (non)linear as-
sumptions of the models manifest when the given components from 3.1B are combined
according to each model in order to reconstruct the patch in 3.1A. As can be seen for the
sum operation in 3.1C, standard linear sparse coding results in strong interference when
the dictionary elements overlap, whereas the max can reconstruct the patch using one
element or the other when the two overlap, thereby minimizing interference. This effect
however leads to correlated multimodal posteriors since each observed pixel yd must be
explained by either one cause or the other, instead of the sum of both. An illustration of
the posteriors of these models will be provided in the following Section. This example
suggests that the max can better model the occluding components (e.g. (Lücke and Sa-
hani, 2008; Puertas et al., 2010; Bornschein et al., 2013)). Furthermore, for simplification
in this example, we implicitly forced all other dictionary elements in 3.1B to be unused,
i.e. associated with coefficients of sh = 0, which is only possible with a spike-and-slab
prior (or other binary prior, which in turn, would not be able to incoorporate the various
gray value intensities of the dictionary elements). Additionally, with the spike-and-slab
prior (shown here for the nonlinear model in Figure 3.1C) allows the model to adapt the
intensity of each image component used to match what it observed in the data.

3.2.1 Related Work

While work on improved optimization approaches for the standard sparse coding contin-
ues and is important for many applications, the above discussed limitations of the un-
derlying generative data model have motivated a number of related studies on improved
models. In recent years, spike-and-slab priors for linear models have frequently been
used. The resulting challenges for parameter optimization have been addressed by apply-
ing factorized variational EM (Goodfellow et al., 2011; Lázaro-gredilla and Titsias, 2011;
Goodfellow et al., 2012), truncated EM (Sheikh et al., 2014) or sampling (Mohamed
et al., 2012). Furthermore, the use of spike-and-slab priors aligns well with the goals of
compressed sensing approaches (Donoho, 2006). In a standard formulation, an observed
variable is re-expressed as a sum of bases where the corresponding coefficients have hard
zeros, and correspondingly the objective function includes an || · ||0-norm instead of the

3.3. INFERENCE: EXACT GIBBS SAMPLING WITH PRESELECTION 37

|| · ||1-norm seen in standard sparse coding (see e.g. (Eldar and Kutyniok, 2012) for a
review).

Similarly, inference and learning for sparse coding models that replace the linear combi-
nation by nonlinear ones have been investigated. Hidden causes models with nonlinearly
interacting signal sources include the noisy-or combination rule (Dayan and Zemel, 1995;
Saund, 1995; Singliar and Hauskrecht, 2006; Wood et al., 2006; Jernite et al., 2013a;
Frolov et al., 2014), exclusive causes (Dai et al., 2013) or a maximum superposition
(Roweis, 2003; Lücke and Sahani, 2008; Bornschein et al., 2013). Also a combination of
linear superposition followed by a sigmoidal nonlinearity (post-linear nonlinearities) have
been investigated (nonlinear ICA (Valpola et al., 1999), sigmoid belief networks (Neal,
1992)). By definition, noisy-or models and sigmoid belief networks assume hidden units
and observed units to be binary, which generally entails different application domains
than used for standard sparse coding. Furthermore, the implicit computational challenges
have prevented a scaling to large numbers of hidden dimensions. Nonlinear ICA and
models with maximum superposition can in principle assume continuous observed and
hidden variables, and are consequently applicable to the same data domain as standard
sparse coding. As for noisy-or models, nonlinear ICA is more challenging to scale to
large hidden spaces, however. For the maximum nonlinearity, earlier models (Roweis,
2003) focused on inference instead of unsupervised learning of model parameters. Re-
cent approaches demonstrated scalability of sparse coding with maximum nonlinearity to
large hidden and observe dimensions (Maximal causes analysis ‘MCA’, (Lücke and Sa-
hani, 2008; Bornschein et al., 2013)) but hidden variables were constrained to be binary
in these cases. Binary priors avoid the analytical intractability usually resulting from con-
tinuous priors but they prevent a fine-tuned data representation and reconstruction with
continuous coefficients.

We will return to these approaches in context of the results in the Discussion section.

3.3 Inference: Exact Gibbs Sampling with Preselection

In this Section we present the optimization of parameters in our model and the novel
inference method developed to address the associated intractabilities.

3.3.1 Parameter Estimation

To estimate the model parameters Θ of the generative model in (3.3) we use Expectation
Maximization (EM). We do inference in the E-step with our proposed method combining

38 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

sampling and latent preselection (Shelton et al., 2011b), which we will introduce in the
next Section. Optimization in the EM framework entails setting the free-energy to zero
and solving for the model parameters (M-step equations) (e.g. (Neal and Hinton, 1998)).

As an example we obtain the following formula for the estimate of image noise:

σ̂2 =
1

NDK

∑
n

∑
d

∑
k

(
max
h

{
Wdhs

(n)
kh

}
− y(n)

d

)2

, (3.7)

where we average over all N observed data points, D observed dimensions, and K Gibbs
samples. However, this notation is rather unwieldy for a simple underlying idea. As such
we will use the following notation:

σ̂2 =
〈
Wdhs

(n)
h − y

(n)
d

〉∗
, (3.8)

where we maximize for h and average over n and d. That is, we denote the expected
values 〈 . 〉∗ to mean the following:

〈f(s)〉∗ =
∑
n

∫
s
p(s|y(n),Θ) f(s) δ(h is max) ds∫
s
p(s|y(n),Θ) δ(h is max) ds

, (3.9)

where δ is the indicator function denoting the domain to integrate over, namely where h
is the maximum. See the Supplementary Material 3.6.1 for detailed derivation of update
equations. Analogously, to compute the expectations of the Gaussian part of the prior
distribution’s parameters, the mean µ̂pr and the noise σ̂2

pr, we denote 〈 . 〉∗∗ to mean the
following:

〈f(s)〉∗∗ =
∑
n

∫
s
p(s|y(n),Θ) f(s) δ(sh 6= 0) ds∫
s
p(s|y(n),Θ) δ(sh 6= 0) ds

, (3.10)

which is identical to 〈 . 〉∗ in Equation (3.9) except that we are interested in support from
all of the posterior distribution where bh = 1, regardless of whether sh is the maximal
cause, and δ is modified accordingly.

Using the condensed notation in Equations (3.9) and (3.10) allows us to concisely express
the update equations for the remaining model parameters:

Ŵhd =
〈shyd〉∗

〈s2
h〉∗

, π̂ = 〈δ(s)〉, (3.11)

µ̂pr = 〈sh〉∗∗, σ̂2
pr = 〈(sh − µ̂pr)

2〉∗∗ (3.12)

3.3. INFERENCE: EXACT GIBBS SAMPLING WITH PRESELECTION 39

In this model Wh can be scaled by an arbitrary factor α when the corresponding sh
is scaled by 1

α
. To prevent W from becoming arbitrarily large (which would lead to

arbitrarily small values of s), common practice is to constrain its columns (each latent
cause) (Wh)

H
h=1 to have an l2−norm less than or equal to one. Instead, we constrain

all columns Wh to be equal to D (equivalent to normalizing expectation of Wdh to one,
i.e. all entries are approximately equal to one). This normalization allows the µ̂pr to be
intuitively more interpretable when comparing results on different data sets where the
data dimensions D may vary.

As one can see in the above equations, in order to compute the parameter updates, we
need to calculate several expectations with respect to a complex posterior distribution.
However, as mentioned in the Introduction to the Chapter, the posterior distribution of
a model (linear or nonlinear) with a spike-and-slab prior is strongly multimodal. See
Figure 3.2 for illustration of the posteriors in the two dimensional case for both (non)linear
models with spike-and-slab and Laplace priors. Calculating expectations of this posterior
is intractable, thus we must develop a new inference method in order to cope with these
computations.

3.3.2 Exact Gibbs Sampling with Latent Variable Preselection

As described, parameter optimization is very challenging in this model. Consequently,
current inference methods cannot address the task. In order to efficiently handle the in-
tractabilities and the complex posterior (multimodal, high-dimensional) illustrated in Fig-
ure 3.2, we take a combined approximate inference approach proposed by Shelton et al.
(2011b). Specifically, we design and propose an exact Gibbs sampler for our model in
order to draw samples from the unique form of our posterior. We draw samples from the
posterior after we have reduced the set of latent variables to those with the most posterior
mass. Reduction via preselection is not strictly necessary, but significantly increases ef-
ficiency when considering high-dimensional posteriors, particularly in sparse models. As
such, we will first describe the sampling step and preselection only later.

Gibbs Sampling. Our main technical contribution for efficient inference in this model
is an exact Gibbs sampler for the multimodal posterior. Previous work has used Gibbs
sampling in combination with spike-and-slab models (Olshausen and Millman, 2000),
and for increased efficiency in sparse Bayesian inference (Tan et al., 2010).

Our aim is to construct a Markov chain with the target density given by the conditional

40 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

posterior distribution:

p(sh|sH\h,y, θ)

∝ p(sh|θ)
D∏
d=1

p(yd|sh, sH\h, θ). (3.13)

We see from Equation (3.13) that the distribution factorizes into D + 1 factors: a single
factor for the prior and D factors for each likelihood.

As the difficult part to sample from is the likelihood,
∏D

d=1 p(yd|sh, sH\h, θ), where the
nonlinearity of the max plays a role, we begin with its construction and only afterwards
will we include the spike-and-slab prior. For the point-wise maximum nonlinear case
we are considering, the likelihood of a single D dimension, yd, is a piecewise function
defined as follows:

p(yd|sh, sH\h, θ)
= N (yd; max

h′
{Wdh′sh′}, σ2)

=


N (yd; max

h′\h
{Wdh′sh′}, σ2)︸ ︷︷ ︸

constant

if sh < Pd

N (yd; Wdhsh, σ
2) if sh ≥ Pd,

(3.14)

where the transition point, Pd, is defined as the point where shWdh becomes the maximal
cause:

Pd =
maxh′∈{H\h}{Wdh′sh′}

Wdh

. (3.15)

We refer to the two pieces of yd in Equation (3.14) as the left and right pieces of the
function: left, ld(sh), when the latent cause is smaller than the transition point, sh < Pd,
and right, rd(sh), when the latent is greater than or equal to the transition point, sh ≥ Pd.
The left piece is constant with respect to sh because the data is explained by another cause
when the value of the latent sh is smaller than the value of the transition point Pd, and
the right piece is a truncated Gaussian when considered a PDF of sh (see Figure 3.3A-
B), because sh is indeed explaining the data. Taking the logarithm of p(yd|sh, sH\h, θ)
transforms equation (3.14) into a left-piece constant and right-piece quadratic function.
Expanding the expression for the logarithm of a given likelihood p(yd|sh, sH\h, θ), each

3.3. INFERENCE: EXACT GIBBS SAMPLING WITH PRESELECTION 41

Figure 3.3: Construction of SSMCA-induced posterior for the Gibbs sampler. Left column:
three contributing factors for the posterior ∝ p(sh | s\h,y,Θ) in log space. A and B: Log likeli-
hood functions each defined by a transition point Pd and left and right pieces rd(sh) and ld(sh).
C Log prior, which consists of an overall Gaussian and the Dirac-peak at sh = 0. D Log poste-
rior, the sum of functions A, B, and C consists of D + 1 pieces plus the Dirac-peak at sh = 0. E
Exponentiation of the D log posterior. F CDF for sh from which we do inverse transform sampling.

left and right piece (the respective sides of each transition point Pd) can be formulated as

ld(sh) = −1

2
log(2π)− log(σ) +

1

2σ2
(yd −max

h′ \h
{Wdh′s

′
h})2 (3.16)

rd(sh) = −1

2
log(2π)− log(σ) +

1

2σ2
(yd −Wdhsh)

2, (3.17)

or more compactly

nd(sh) =

{
ld(sh) if sh < Pd
rd(sh) if sh ≥ Pd,

(3.18)

which from now on will be referred to as an individual function segment of the entire
likelihood function.

Now we generalize the likelihood expression in Equations (3.14) to consider all observed
D dimensions in y. We take the logarithm of

∏D
d=1 p(yd|sh, sH\h, θ), which results in

D + 1 left-piece constant and right-piece quadratic functions to be summed. The sum
of all of these pieces will result in the desired D-dimensional likelihood function, which
will be another piecewise function with D + 1 disjoint segments. In order to implement
the summation of all of these md(sh) segments efficiently, we need to first sort them
by their transition points Pd, from smallest to largest values, which we denote by δ =

argsortd(Pd). With this notation, the summation of the pieces of the likelihood can be

42 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

expressed:

D∑
d

log p(yd|sh, sH\h, θ) (3.19)

= m(sh) (3.20)

=



m1(sh) s < Pδ(1)

m2(sh) Pδ(1) ≤ s < Pδ(2)

m3(sh) Pδ(2) ≤ s < Pδ(3)

...
...

mD+1(sh) Pδ(D) ≤ s.

(3.21)

Importantly, we observe from Equations (3.16) and (3.17) that each segment md(sh) is a
2nd degree polynomial, which can be represented by computing three coefficients. Thus,
we can elegantly compute the operation in Equation (3.19) as the summation of the coef-
ficients for each segment md(sh), and since all pieces ld(sh) and rd(sh) are polynomials
of 2nd degree, the result is still a 2nd degree polynomial. So for all D+ 1 components of
the likelihood in (3.14), we can compactly formulate (3.19) with

md(sh) =
d−1∑
j=1

rδ(j)(sh) +
D∑
u=d

lδ(u)(sh). (3.22)

=
D∑
d′=1

nd′(sh) (3.23)

for 1 ≤ d ≤ D + 1

Now that we have computed the difficult part of the posterior, we incoorporate the spike-
and-slab prior in two steps. The Gaussian ‘slab’ of the prior is taken into account by
adding its 2nd degree polynomial to all the pieces md(sh), which also ensures that every
piece is a Gaussian. The sparsity, or the ‘spike’, will be included only after constructing
the full piecewise cumulative distribution function (CDF).

To construct the piecewise CDF, we relate each segment in md(sh) to the Gaussian
∝ exp(md(sh)) it defines. Next, the Bernoulli ‘spike’ of the prior is accounted for by
introducing a step into the CDF that corresponds to sh = 0 (see Figure 3.3F), where
the height of the step is proportional to the marginal probability p(sh = 0|s\h). Once
the CDF is constructed, we simulate each sh from the exact conditional distribution
(sh ∼ p(sh|s\h = s\h ,y, θ)) by inverse transform sampling. Figure 3.3 illustrates the
entire process.

3.4. EXPERIMENTS 43

Preselection. To dramatically improve computational efficiency of inference in our model,
we can optionally preselect the most relevant latent variables before doing Gibbs sam-
pling. We do this by using the same optimization method introduced in Chapter 1.1 and
used in the Select and Sample process in Chapter 2. With latent variable preselection,
the posterior distribution p(s |y (n),Θ) can be approximated by a truncated distribution
qn(s; Θ) computed over a reduced latent state space:

p(s|y(n),Θ)

≈ qn(s; Θ) =
p(s,y(n)|Θ) I(s ∈ Kn)∑
s ′∈Kn

p(s ′(n),y(n)|Θ)
, (3.24)

where Kn contains the latent states of the relevant variables for data point y(n), and I(s ∈
Kn) = 1 if s ∈ Kn and 0 otherwise. To recap, the subsets Kn are chosen in a data-driven
way using a deterministic selection function, they vary per data point y (n), and should
contain most of the probability mass p(s |y) while also being significantly smaller than
the entire latent space. We define Kn = {s | for all h 6∈ I : sh = 0} where I contains the
indices of the latents estimated to be most relevant for y (n). The selection function we
use for this model to obtain these latent indices is the cosine similarity:

Sh(y (n)) =
WT

h y (n)

||Wh||2
(3.25)

to select the H ′ < H highest scoring latent variables for I. This boils down to selecting
the H ′ dictionary elements that are most similar to each data point, hence being most
likely to have generated the data point. We then sample from this reduced set of latent
variables.

3.4 Experiments

The above described procedure to optimize the parameters of the nonlinear spike-and-
slab model will be referred to as SSMCA. All numerical experiments for SSMCA used
a parallel implementation of the EM algorithm for parameter optimization (Bornschein
et al., 2010), where we compute the E-step approximately using variable preselection and
our exact Gibbs sampler. For all described results, 1/3 of the samples are used for burn-in
and 2/3 are used for computing the expectations. We initialized our parameters by setting
the σpr and σ equal to the standard deviation observed in the data, the prior mean µpr is
initialized to the observed data mean. W is initialized at the observed data mean with

44 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

additive Gaussian noise of the σ observed in the data.

3.4.1 Parameter Recovery on Artificial Ground-truth Data

The goal of the first set of experiments is to verify that our model and inference method
produce an algorithm that can (1) recover ground-truth parameters Θ = (π, µpr, σpr,W, σ)

from data that is generated according to the model and (2) reliably converge to locally (if
not globally) optimal solutions. We generate ground-truth data with N = 2, 000 consist-
ing of D = 5 × 5 = 25 observed and H = 10 latent variables according to our model:
N images with overlapping ‘bars’ of varying intensities and with Gaussian observation
noise of variance σgt = 2 (Figure 3.4A). On average, each data point contains two bars,
π = 2

H
.

First, we optimize the model using just Gibbs sampling, which aims to do inference as
exactly as possible in this model. Namely, we do sampling without variable preselec-
tion and draw samples from the entire latent space: we set the preselection parameter
H ′ = H and draw 30 samples from the full H-dimensional posterior. After this, we
evaluate our combined approximate inference approach of preselection and Gibbs sam-
pling. Results (Figure 3.4B,E) show that our algorithm converges quickly and learns the
generating ground-truth parameters.

Next, we investigate a range of numbers of samples drawn and consider the range of
preselected latent variables H ′ ∈ (4, 10) from the entire H-dimensional posterior space.
These experiments yield the same results: our algorithm reliably converges quickly to (at
least) locally optimal solutions of all parameters in all runs of the experiments with 30
EM iterations. This suggests that our approximation parameters do not strongly affect
the accuracy of our inference results. See Figures (Figure 3.4C,D,E) for some further
convergence examples, namely where H ′ = 4 and H ′ = 5.

3.4.2 Occlusions Data: Dictionary Learning and Image Reconstruc-
tion

In order to directly evaluate the differences between our nonlinear SSMCA model and the
standard linear sparse coding model (which will be referred to as LinSC), we consider
dictionary learning and image reconstruction on two data sets consisting of true occlu-
sions. Here the task is to learn the set of components W, i.e. the dictionary elements,
that are behind the composition of a given observed data set y, and consider reconstruc-
tion of individual images/data points y(n). The goal of these experiments is to understand

3.4. EXPERIMENTS 45

Figure 3.4: Parameter recovery on synthetic data. Results of three differently parameterized
sets of experiments, each with 10 experimental runs of 30 EM iterations on identical artificial
ground-truth data generated according to the SSMCA model: A N = 2, 000, D = 5 × 5. Three
experimental settings, each preselecting a different number of latent variables, are shown: B
H ′ = H = 10, C H ′ = 5, and D H ′ = 4, although the same results were obtained by the entire
range of preselection parameters H ′ = [4, 10]. Importantly, the figure shows accurate recovery of
ground-truth parameters which are plotted with dotted lines. B, C and D show in each column the
parameter convergence of each of the three experiments, where the rows contain the following:
data noise σ, sparsity H × π, prior standard dev. σpr, and the prior mean µpr. Finally, E shows
the set of learned generative fields/components Wh corresponding to each experimental set B
H ′ = H = 10, C H ′ = 5, and D H ′ = 4.

how the learned components are affected by the models’ assumptions and furthermore the
effect this has on the quality of the image reconstruction.

For the linear SC comparison we use the sparse online dictionary learning algorithm

46 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

(Mairal et al., 2009b), which is a state-of-the-art matrix factorization sparse coding ap-
proach and is based on the objective function formulated in (3.1). Furthermore, in order
to study the effect of the spike-and-slab prior, we apply the SSMCA algorithm with a nar-
row and fixed prior slab (small variance for the Gaussian of the prior distribution). Such
a fixed narrow slab approximates a binary prior. Binary priors have thus far been used
with nonlinear approaches (Dayan and Zemel, 1995; Lücke and Sahani, 2008; Lücke and
Eggert, 2010; Jernite et al., 2013b; Bornschein et al., 2013) including previous MCA ver-
sions (Lücke and Sahani, 2008; Lücke and Eggert, 2010; Bornschein et al., 2013). We will
refer to the SSMCA algorithm with fixed narrow slab as SSMCAfix. To make sure that the
differences in the results using SSMCAfix vs. SSMCA can be attributed to the difference
between binary-like and spike-and-slab prior, we make sure that SSMCA and SSMCAfix

are identical except for the algorithmic aspects concerned with learning the slab. Note
that the data model underlying SSMCAfix connects to that of standard MCA (Lücke and
Sahani, 2008; Lücke and Eggert, 2010) and becomes identical in the limit of an infinitely
narrow slab (a delta peak). However, the algorithms for parameter optimization remain
different also in this limit (SSMCAfix remains sampling based, for instance).

Realistic Occlusion data set

The first data set we compare the algorithms on is one with controlled forms of sparse
structure, a realistic artificial data set of true occlusions (data created by actual occlusions
and not following any model considered here). The data was generated using the Python
Image Library (PIL) to draw hundreds of overlapping edges/strokes in a 256× 256 pixel
image: each stroke had an integer intensity between (1, 255), a width between (2, 4)

pixels, and a length, starting, and ending position drawn independently from a uniform
distribution. The image was then cut into overlapping D = 9× 9 patches, each of which
contained k ∈ (0, 5) overlapping strokes, for N = 61, 009. Gaussian observation noise of
σ = 25 and µ = 0 was then independently added to each patch. Examples are shown in
Figure 3.5. Additionally, the data set contains the corresponding (automatically obtained)
labels for each image, indicating the ground-truth number of occluding strokes k ∈ (0, 5)

per image (for e.g. optional use in performance evaluation).

Such a data set represents and isolates challenging aspects of low-level image statistics
that are present in all natural images. Particularly, it contains edges of varying intensities
and their occlusions. We have selected it because it is complex enough to narrow in on the
consequences of the different model assumptions, but simple enough that we know what
generated/caused the data. In this way, we can interpret the results and evaluate what each
approach learns, particularly how they cope with occlusions.

We run the nonlinear SSMCA and the linear SC methods on the occlusions data set.

3.4. EXPERIMENTS 47

Figure 3.5: Synthetic occlusion data set and cut-out original and noisy patches. Examples
taken from the occlusion data set. A shows an original noise-free image of generated occlud-
ing strokes of random width, pixel intensity, and starting/ending points. B shows a handfull of
overlapping image patches cut from the original, noise-free data. C shows examples of the noisy
training data, with independent σ = 25 noise added to B.

We set the number of dictionary elements to be learned from the data set to H = 100,
but we also ran experiments learning larger (H = 256) dictionaries, which yielded the
same results for both the linear and nonlinear methods. For SSMCA and SSMCAfix,
we draw 40 samples per data point, per variable (i.e. 40 × 100 = 40000 samples per
data point when sampling 100 variables). The number of preselected latent variables
was set to H ′ = 10 with 2 randomly chosen variables each iteration. For LinSC, we
used regularization parameters a = (1, 50, 100) in the linear objective (3.1) in order to
evaluate the reconstruction and the components learned across a range of sparse solutions.
For regularization, α enforces the sparsity of a solution, where a small α indicates less
penalization of learning a non-sparse solution and thereby the learning of a large set of
components (and vice versa for large values of α).

The results showcase a number of notable effects. First, we see in Figure 3.6A the re-
lationship between sparsity (number of components used for reconstruction) and data
complexity (k number of strokes in the data). The complexity of the data reconstruction
by SSMCA more closely follows the actual complexity in the data: the SSMCA plot (blue
curves) shows a nearly linear relationship of the number of components used for recon-
struction versus the number of components (strokes) actually in the data. In other words,
although all methods adapt the number of fields used for reconstruction to the complexity
of the data, our approach adapts to the extent of using nearly only as many components
as are actually in the image (according to ground-truth). Furthermore, Figure 3.6B shows
the relationship of the reconstruction quality versus the corresponding data complexity,
in terms of the k number of strokes in the data. We quantify the quality of reconstruction
with the mean squared error (MSE,

∑
n(xn − x̂n)2, or the mean MSE, MMSE, which is

MSE averaged over the respective data set), which is very sensitive to subtle variances

48 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

in an image versus its reconstruction. Notably, when the linear method is regularized to
yield a solution as sparse as the nonlinear method (LinSC a = 100, cyan curves), its
reconstruction MSE suffers.

Figure 3.6: Comparative experiments of linear and nonlinear sparse coding on dictionary
learning and image reconstruction. With H = 100 learned dictionary components we evalu-
ate the number learned and used for reconstruction. A shows the relationship between sparsity
(number of components used for reconstruction) and data complexity (number of strokes in the
data). Interestingly, the SSMCA plot (blue curves) shows a nearly linear relationship of the num-
ber of components used for reconstruction versus the number of components (strokes) actually in
the data, suggesting that reconstruction-complexity of the data by nonlinear model more closely
follows the actual complexity in the data. On the contrary, the linear parameterization that yields
good reconstruction results a = 1 shown in green, does not adapt to the data complexity at all:
it consistently uses nearly 80 of the learned 100 components per reconstruction, regardless of the
data point’s actual complexity (note the change in scale of the y-axis around 30 components in
order to fit the green curve on the plot). B shows the relationship of the mean squared error (MSE)
of the reconstructions of all versus the corresponding data complexity (number of strokes in the
data). When the reconstruction-complexity (sparsity) is far from the actual complexity of the data
(linear methods: red, a = 50 and green a = 1 cases) the MSE improves. However, when the
sparsity is more closely matched to the data, SSMCA and the weakly regularized linear methods
result in a poorer MSE. SSMCA nevertheless yields a better MSE in this case, even when it and
linSC a = 100 have a very similarly sparse solutions/use the same number of components. Note
that the error of the least sparse LinSC approach (a = 1) is so low (mean MSE= 1.81), it does
not even appear on this graph. Error bars shown are scaled to be 10% of the standard deviation
for all methods in all stroke-complexity cases. The mean MSE (MMSE; averaged over the entire
data set) is shown in the legend next to the respective algorithm.

3.4. EXPERIMENTS 49

Next, we investigate the actual components each model uses in order to reconstruct a
given image patch. Figures 3.7A-E contains a comparison of the reconstruction of a
handful of image patches by the linear and the nonlinear methods. Evaluation of the
fields/components learned by each method suggests that the nonlinear max, which aims
to model occlusions, is better able to learn generating causes of the occlusion-rich im-
ages. Regardless of image complexity – how many causes/strokes are in an image – the
components used by the nonlinear method (SSMCA) resemble the true causes of the im-
age: each component contains a single, interpretable stroke. On the other hand, none of
the a parameterizations of the linear method yield stroke-like components, even when the
solution is regularized to be as sparse as SSMCA. For example, if we just consider sparse
solutions, namely compare the methods which use fewest components for reconstruction
(SSMCA and LinSC with a = 100; blue and cyan curves, respectively), we see that not
only is the nonlinear SSMCA solution consistently better in terms of MSE, but also the
components learned/used are very different.

Although SSMCA extracts components resembling the generating causes, in some cases
the reconstruction MSE suffers because the model does not allow for error correction via
adding negative components (which, if it did allow for such corrections, would further-
more lead to a less sparse solution). In contrast, the linear methods are optimized for the
best image reconstruction MSE using summation (as can be seen in the method’s objec-
tive function in Equation (3.1)), and consequently are able to learn a set of components
which can be added/subtracted for the optimal MSE. This is particularly evident in the
linear a = 1 case (green plots/highlighting), where sparsity is weakly enforced, and thus
a larger set of components can be used to fine-tune a near-perfect reconstruction of the
original image. Components learned by a control run with SSMCAfix with σpr fixed to
0.25 look similar to those learned by SSMCA while they look quite different than those
learned by linear sparse coding (see Figure 3.8 for some examples). The learned sparsity
is also similar to the one learned by SSMCA but we observed only weak scaling with
the complexity of the patches (for σpr ≥ 0.25) to no scaling (for σpr ≤ 0.25). Also the
sparsity values were consistently higher for SSMCAfix compared to SSMCA (i.e. fewer
components for SSMCAfix). Furthermore, the average image reconstruction errors sig-
nificantly increases for SSMCAfix compared to SSMCA (e.g. for σpr = 0.25 we get a
MMSE of 1833). The significant increase in reconstruction error is due to a decreased
ability to fine-tune dictionary coefficients to the intensities of the components – the inten-
sity value range the coefficients can use is lower. For the SSMCAfix algorithm this also
seems to indirectly influence the learned sparsity, maybe due to SSMCAfix attributing
components with a low pixel intensity to background noise. We observe the reconstruc-
tion errors and sparsity to increase when we decrease the width of the fixed slab (namely,
when decreasing σpr).

50 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

Figure 3.7: Comparison of linear and nonlinear sparse coding on image reconstruction.
Shown are a handfull of real data points of varying complexity in terms of the number of strokes
k in each image (k ∈ (1, 5) strokes per image), the components/fields learned by the various al-
gorithms, the corresponding reconstruction of the given data point, and the mean squared error
(MSE) of each reconstruction. Image complexities shown are: A k = 1 stroke, B k = 2 strokes,
C k = 3 strokes, D k = 4 strokes, and E k = 5 strokes. Regardless of image complexity k, the
components used by the nonlinear method (SSMCA) resemble the true causes of the image: each
component contains a single, interpretable stroke. On the other hand, none of the a parameter-
izations of the linear method yield stroke-like components, even when the solution is regularized
to be as sparse as SSMCA (a = 100). Note: all images in the a = 1 case appear brighter than
they actually are, due to visualization with a python toolbox, but are in reality of the identical
brightness scale to the original data point (and all other shown cases), hence the reconstruction
error (MSE) is very low.

3.4. EXPERIMENTS 51

Figure 3.8: Results of nonlinear sparse coding using a binary prior on image reconstruc-
tion. The nonlinear sparse coding model if applied to artificial strokes using a fixed narrow
slab (SSMCAfix). The two figure columns show image reconstruction results for SSMCAfix with
σpr = 0.25 for two different ground-truth stroke numbers: k = 3 in the first row and k = 5 in the
second row. SSMCAfix was first trained with fixed σpr and then applied to the data. Reconstruc-
tions were computed as described for Figure 3.7.

Regarding all the results reported here, note that the max is also just an approximation
of the true occlusion combination rule. If a dark stroke is occluding a brighter stroke, for
instance, the true gray-value of the overlapping region is not reproduced by the max. Still,
the SSMCA reconstruction is (given ground-truth strokes as dictionary elements) at least
as good as in the linear case, and better except for boundary cases. Therefore, it seems
to be easier for the nonlinear model to learn dictionary elements close to the generating
components, i.e. interpretable components.

To summarize, SSMCA extracts meaningful, interpretable components – components
closely match the generating process, adapts to complexity in the data, as measured by
the number of strokes/edge components in an image, and uses correspondingly more or
fewer components for the reconstruction. The reconstruction solution SSMCA offers is
much sparser than that of LinSC, for any levels of reconstruction error (MSE).

As a control, we also ran the same set of experiments, but varying H and H ′ – learning
a larger set of latent components (dictionary set) H and ranging the SSMCA preselection
parameter H ′ values – all of which resulted in the same trends shown in Figures 3.6
and 3.7.

Natural Image Occlusions

We have shown that our approach can model realistic artificial occlusions well. Now we
are interested in investigating the performance of the linear and nonlinear approaches on
naturally occurring occlusions. We use an image of underbrush in a forest (taken from
‘bridge.jpg’, which has been used for denoising benchmarking (Mairal et al., 2009b)),

52 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

which is rich with occluding branches and twigs. See Figure 3.9A for the original noise-
free image, from which we cut a 110 × 110 pixel occlusion-rich section and scaled it up
to 256× 256 pixels to use in our data set, shown in Figure 3.9B. To compose the data set
as in the previous experiments, we cut the 256× 256 image, with pixel values xi ranging
from (0, 255), into N = 61, 009 overlapping image patches of D = 9× 9 pixels, then add
independent Gaussian noise with σ = 5 . We run the exact same set of experiments as
with the original occlusions data set, with both the nonlinear and linear methods learning
a dictionary size of H = 100 latent variables. For SSMCA we again draw 40 samples
per data point, per variable (i.e. 40 × 100 samples per data point), and set the number of
preselected latent variables to H ′ = 10 with 2 randomly chosen per iteration. For linear
SC, we again used regularization parameters a = (1, 50, 100).

3.4. EXPERIMENTS 53

Figure 3.9: Results of comparative experiments of linear and nonlinear sparse coding meth-
ods on component learning/image reconstruction on natural image patches. Experiments
evaluated are the nonlinear SSMCA and SSMCAfix (where the ’slab’ is fixed to be narrow, i.e. re-
sulting in a spike-and-slab prior distribution closer to a binary distribution), and the linear model
with a range of regularization parameters α to enforce the sparsity of a solution (small α leads to
less sparse solutions and larger α to more sparse solutions). A shows the original natural image
data, bridge.jpg (Mairal et al., 2009b), from which we cut an occlusion-rich underbrush region.
B shows the original section taken from A, scaled up to 256× 256 pixels, which was then cut into
overlapping patches and given independent Gaussian noise with σ = 5 to compose the considered
data set. C shows the mean squared error (MSE) of the compared nonlinear and linear meth-
ods’ reconstruction averaged over the entire data set, with the standard deviation indicated with
error bars. The trend is the same as in the artificial occlusions data experiments: the nonlinear
method maintains reasonably low MSE, while learning a sparse set of interpretable components,
whereas the linear method achieves a very low MSE only when it does not learn a sparse (and
never interpretable) solution of components.

54 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

Because we do not have any ground-truth associated with this data set as to how many
strokes/components are in a given image, we can only compare the average reconstruc-
tion error (MMSE) for the entire data set across methods. Figure 3.9C shows the mean
MSE of each method with the associated standard deviation. The results follow the trend
outlined in the previous set of experiments (in Figure 3.6B), where again if LinSC uses as
sparse a reconstruction as SSMCA (in a = 100 case), the mean reconstruction error is far
poorer than that of SSMCA (MMSE = 269.96 vs. MMSE= 75.71). Furthermore, even
when LinSC is less sparse (in a = 50 case), the mean reconstruction error is still slightly
poorer than SSMCA (MMSE = 83.89 vs. MMSE= 75.71). On the other hand, when
the linear model uses a highly non-sparse solution (LinSC a = 50, resulting in using 75

of 100 components for reconstruction), it can fine-tune its reconstruction to achieve very
low error (MMSE = 0.93). However, the components each linear model uses for recon-
struction are non-interpretable (i.e. do not resemble edge-like structures) for any of the
linear models, regardless of their sparsity or reconstruction error both nonlinear models
use components that indeed resemble edge-like structures and are interpretable.

When applying SSMCAfix as a control, the learned dictionary components are similar
to the ones by SSMCA, however, the reconstruction error is much worse than that of
SSMCA with an MMSE of 290 for σpr = 0.25 (see Figure 3.6 for comparison). When we
make the slab narrower still, the reconstruction error further increases (e.g. MMSE= 377

for σpr = 0.1), which is consistent with a reduction of the ability to accurately match the
varying stroke intensities using continuous coefficients.

3.4.3 Natural Image Patches and Neural Consistency

Understanding the encoding provided by sparse coding and its capability to extract inter-
pretable data components is important for functional applications but, furthermore, also of
high relevance for probabilistic models of the primary visual cortex (V1). Since the sem-
inal study by Olshausen and Field (1997) sparse coding can be considered as a standard
model for the response properties of V1 simple cells. Evidence that response properties
of V1 simple cells may be better described by a sparse coding model that reflects oc-
clusions has been provided by a recent comparative study (Bornschein et al., 2013). To
complete our investigation of the SSMCA model, we will apply it to the same data as used
in that study. In contrast to the binary sources assumed by Bornschein et al. (2013), our
model allows us to study the statistics of basis functions under the standard assumption
of continuous latents.

We apply our model to N = 50, 000 image patches of D = 16 × 16 = 256 pixels and
learn H = 500 hidden variables/generative fields, and run 50 EM iterations with 100

3.4. EXPERIMENTS 55

samples per data point. The patches were extracted from the van Hateren natural image
database (van Hateren and van der Schaaf, 1998) and subsequently preprocessed using
pseudo-whitening (Olshausen and Field, 1996). We split the image patches into a positive
and negative channel to ensure yd ≥ 0: each image patch ỹ of size D̃ = 16 × 16 is
converted into a data point of size D = 2 D̃ by assigning yd = [ỹd]

+ and yD̃+d = [−ỹd]+,
where [x]+ = x for x > 0 and [x]+ = 0 otherwise. This can be motivated by the
transfer of visual information by center-on and center-off cells of the mammalian lateral
geniculate nucleus (LGN). In a final step, as a form of local contrast normalization, we
scaled each image patch so that 0 ≤ yd ≤ 10.

All results are shown in Figure 3.10. In Figure 3.10A, we have a handful of the learned
dictionary elements Wh (which are a variety of Gabor-Wavelet and Difference of Gaus-
sians (DoG)-like shapes). To quantitatively interpret the learned fields, we perform re-
verse correlation on the learned generative fields and fit the resulting estimated receptive
fields with Gabor wavelets and DoGs (see the Supplementary Material Results 3.6.2 for
details). Next, we classify the fields as either orientation-sensitive Gabor wavelets or
‘globular’ fields best matched by DoGs. In Figure 3.10B we compare the percentages of
‘globular’ fields to in vivo recordings. These results are consistent with neural record-
ings: notably, the proportion of DoG-like fields in the same high range as the proportions
found in different species (Ringach, 2002; Usrey et al., 2003; Niell and Stryker, 2008)
(See (Bornschein et al., 2013) for data and a discussion), which is a result not observed
by the established linear SC variants. The learned prior and its parameters are shown in
Figure 3.10C: learned sparseness was πH = 6.2 (i.e. on average six active latent variables
per image patch), mean µpr = 0.47, with standard deviation σpr = 0.13. The learned data
noise was σ = 1.4. Exhibiting consistency with the learned prior, Figure 3.10D shows a
handfull of the inferred latent variables (coefficients) sh. These correspond to the actual
activations of the diverse dictionary elements Wh, each of which is visualized in the up-
per right of each subfigure. Please see the Supplementary Material 3.6.2 for the complete
set of generative fields learned and for a larger set of the learned prior activations.

56 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

Figure 3.10: Analysis of dictionary components learned by the SSMCA algorithm on natural
image patches. A Example dictionary elements Wh after learning. B Fraction of globular fields
estimated from in vivo measurements, compared to ours (after fitting with Gabor wavelets and
DoG’s; globular percentages taken from Bornschein et al. (2013) who analyzed data provided
by Ringach (2002) and estimated percentages of globular fields from data in two further papers
(Usrey et al., 2003; Niell and Stryker, 2008). C Learned prior. D Actual activations of diverse
dictionary elements sh (posterior averaged over data points).

Since we have shown consistent predictions with neural recordings, we finally test the
model for consistency with the natural image patches data set. Specifically, we are inter-
ested in consistency of the prior beliefs with inferred beliefs, as it is a necessary condition
of the correct data model that the posterior averaged over the data points y(n) matches the
prior (compare e.g. (Berkes et al., 2011a)):

lim
N→∞

1

N

∑
n

p(s |y(n),Θ) = p(s |Θ). (3.26)

3.5. DISCUSSION 57

After the learning on image patches as described above, we observed that posteriors aver-
aged over data points closely resemble the learned prior (see Figure 3.10E for examples).
Linear sparse coding has reportedly struggled with this consistency condition (see (Ol-
shausen and Millman, 2000) for a discussion).

3.5 Discussion

In this work we introduced a sparse coding model that modifies standard sparse coding in
two ways: it uses a spike-and-slab distribution instead of a Laplace prior and the nonlinear
max superposition instead of the standard linear superposition. With these additions,
the proposed model can realistically model low-level image properties. Particularly, the
nonlinearity of the max equips the approach to well-approximate occlusions.

The main technical contribution of this work was a method to make inference possible in
a model with these two modifications. We proposed an exact Gibbs sampler (to use in the
context of Select and Sample) that constructed the conditional posterior with high accu-
racy and efficiency. This inference approach allowed us to apply, for the first time, a sparse
coding model with continuous latents and strongly nonlinear combination to reasonably
high-dimensional observed and hidden space dimensions. The approach is therefore ap-
plicable to the typical application domains of standard sparse coding. Furthermore, it
offers itself as a novel model for neural responses that encode component intensities. Un-
like (linear and nonlinear) models with binary latents (Haft et al., 2004; Henniges et al.,
2010; Bornschein et al., 2013), it can capture a more fine-tuned representation of sensory
stimuli.

A main focus of this work was in gaining deeper understanding of the consequences of
the component combination assumption (linear or nonlinear) and to highlight these con-
sequences empirically in numerical experiments. First, in experiments on artificial data,
we have shown that the model and inference approach can learn ground-truth parameters.
Furthermore, using experiments on natural image patches, we have demonstrated con-
sistency of our model in two ways: its predictions are consistent with (1) in vivo neural
recordings and with (2) its prior beliefs. Our experiments on dictionary learning and im-
age reconstruction showed, as the crucial difference, that the nonlinear method learns and
uses interpretable image components when reconstructing a given image patch (unlike the
linear method (Mairal et al., 2009b)). Namely, we have defined ‘interpretable’ to mean
that the extracted components closely match the generating process. Finally, we have
shown that our method adapts to complexity in the data and uses correspondingly more
or fewer components for the reconstruction. Not only does our method yield meaningful
and adaptive solutions, but its solution is always much sparser than that of any of the

58 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

comparable parameterizations of the linear SC method, for any level of corresponding
reconstruction error (MSE).

Our results consequently show that the max nonlinearity is sufficient to reproduce many
properties desired from a latent variable approach to image patch modelling – especially
“interpretable” encoding. While explicit occlusion models can be developed based on
similar methods as used here (see (Henniges et al., 2014) and citations therein), a com-
bination with a prior for continuous variables (such as the spike-and-slab distribution) is
still a research domain posing many difficult scientific questions.

Although we have observed that SSMCA can successfully model the generation process
of some occlusion-rich data, it is currently limited in its applicability to functional tasks.
SSMCA extracts components that resemble the low-level image effects that generate oc-
clusions in images, e.g. the overlapping edges/branches in a picture of tree branches.
However, when the goal is to achieve consistently nominal error in reconstructing the
original image (here this was measured by the mean squared error), the SSMCA model is
a poor choice. SSMCA is catered to find a holistic sparse solution set that is easily inter-
pretable, such as an individual branch edges in a tree. Linear models on the other are capa-
ble of learning a less sparse solution set that, albeit non-interpretable, yields consistently
very low reconstruction error – summing as many components as necessary for optimal
image reconstruction. From this it follows that, in its current form at least, SSMCA can-
not outperform leading linear models on tasks that have image reconstruction at its core
such as inpainting or denoising. Confirming this, in preliminary denoising and inpainting
experiments (not included in this thesis), SSMCA did not outperform current methods
but was nonetheless comparable to the results of some leading linear models (Lázaro-
gredilla and Titsias, 2011; Zhou et al., 2009). Extensions targeting image restoration and
reconstruction could be explored in future work.

The model is somewhat limited in terms of the complexity of the data it of which it can
successfully model. Generalizations of SSMCA could, for example, take into account
object depths and ordering of components for a more explicit occlusion modelling. The
unconstrained object permutations in that case, however, lead to super-exponential scaling
of hidden states, making inference even more challenging. Additionally, further refine-
ments to the model, by e.g. learning individual means for each spike-and-slab and/or
learning different noise estimates for each pixel in the image patch could drastically im-
prove its applicability to a wider variety of data and tasks.

3.6. SUPPLEMENTARY MATERIAL 59

3.6 Supplementary Material

3.6.1 M-step Parameter Equation Derivations

The equations computed every EM iteration in the M-step to update the model parameters
to the current maximum likelihood solution are shown here with their derivations.

The optimal parameters that maximize the data log likelihood under the generative model
can be found using EM algorithm (see e.g. (Neal and Hinton, 1998)), which iteratively
optimizes a lower bound F(Θ, q) of the likelihood with respect to the parameters Θ and
a distribution q:

L(Θ) ≥ F(Θ, qΘ′) =

N∑
n=1

∑
s

qn(s|Θ′) log
p(y(n), s|Θ)

qn(s|Θ′)
(3.27)

= 〈log p(y, s |Θ)〉q(s|Θ′) + H[q(s|Θ′)]. (3.28)

Each iteration consists of an E-step and an M-step. The E-step optimizes the lower bound
with respect to to the distributions qn(s |Θ) by setting them equal to the posterior dis-
tributions qn(s |Θ) ← p(s | y(n),Θ) while keeping the parameters Θ fixed, denoted by
Θ′. The M-step then optimizes F(Θ, qΘ′) with respect to the parameters Θ keeping the
distributions qn(s |Θ′) fixed. If we are given many samples of s for the posterior then we
wish to find:

Θ(t+1) = argmaxΘF(Θ, qΘ(t)). (3.29)

This is maximised with the maximum likelihood estimate:

Θ(t+1) = argmaxΘ〈log p(y, s |Θ)〉q(s|Θ(t)). (3.30)

To keep the derivation focused, we present a simple derivation of the update equations
only for a single element of W . The other parameters are similarly derived and are not
covered here. For pedagogical purposes we first derive an update equation without a max
rule, then we show how this rule should be modified when the max rule is used. Assuming
the data y(n) is distributed as follows:

y(n) = ws(n) + ε (3.31)

where ε ∼ N (µ = 0; σ2). for w. This gives the conditional probability as:

p(y(n) | s(n), w) =
1

σ
√

2π
exp

(
−1

2

(
y(n) − ws(n)

σ

)2
)

(3.32)

60 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

In log space this is a quadratic function:

log p(y(n) | s(n), w) = c− log σ − 1

2

(
y(n) − ws(n)

σ

)2

(3.33)

and is summed over all datapoints n. The maximum likelihood solution differentiates
this sum with respect to w (this function is linear in σ and when differentiated σ can be
discarded) to find the maximum:

d

dw

[∑
n

(
y(n) − s(n)w

)2

]
= 0. (3.34)

From which the maximum is given by:

w =

∑
n s

(n)w(n)∑
n s

(n)2
. (3.35)

However, we care about finding the ML solution for the max rule:

y(n) = max
h

{
Whs

(n)
h

}
+ ε (3.36)

If the new estimates of Wh do not change significantly then the simple derivation for w
will apply to Wh, but only the data for which Wh is the maximum will be used. The data
is going to vary over: the number of images N , the number of samples per image K, and
we will estimate Whd per latent dimension h and observed dimension (or pixel) d. This
leads to:

Whd =

∑N
n

∑K
k δ(h is max)s

(k)
hny

(n)
d∑N

n

∑K
k δ(h is max) s

(k)
hn

2 (3.37)

which corresponds to the results given in equation (9) of the main paper. δ(h is max) is
used to identify the index for which Whds

k
hn is the maximal cause of the data, if it is not

the maximal cause, then δ(·) returns 0, and the term does not contribute to the sum.

3.6.2 Experiments: Natural Image Patches

The complete set of generative fields learned W learned in the experiments on natural
image patches and a larger set of the learned prior activations are shown here.

Here we show further results from the experiment on N = 50, 000 preprocessed and
channel split natural image patches of 16× 16 pixel.

First we relate the generative fields that are learned from image patches to their corre-

3.6. SUPPLEMENTARY MATERIAL 61

sponding receptive fields as measured in biological systems. In order to do so we carried
out several reverse correlation experiments, with the aim of identifying the relationship
between the generative fields and the reverse-correlation fields. To calculate the reverse
correlation for a single latent variable we calculate the average activation for a particular
image (since the code is sparse, most of the time activations will be zero). The images are
then averaged together, weighted by the average activation.

In Figure 3.11A we show the generative fields that are learned with our method. Fig-
ure 3.11B shows the receptive fields obtained by estimating the first order linear mapping
from input to hidden units. The mapping is estimated by combining the preprocessing (a
linear mapping with a kernel for pseudo-whitening) with the mapping obtained by reverse
correlation using preprocessed patches. As can be observed by comparing Figure 3.11A
and B, the qualitative and quantitative shapes of generative and receptive fields are es-
sentially equal. For the results in the main text in Figure 3.11 we used the receptive field
estimates in Figure 3.11B. Please see the preliminary study (Shelton et al., 2012a) for
more details and analysis of the model’s application to response properties in primary
visual cortex.

In Figure 3.12, we see a histogram of the latent activations of the 20 most often active
dictionary elements, all of which follow a spike-and-slab distribution, consistent with our
model’s prior beliefs, as defined in Equation (3.26).

62 CHAPTER 3. NONLINEAR SPIKE-AND-SLAB SPARSE CODING

Figure 3.11: A Full set of H = 500 learned generative fields (Wh). B Fields after reverse
correlation with preprocessed input patches.

3.6. SUPPLEMENTARY MATERIAL 63

Figure 3.12: Histogram of the latent activations of the 20 most often active dictionary elements.
This corresponds to the prior over latent units that we have assumed in our model, thus supporting
the consistency of the model as defined in Equation (3.26).

Chapter 4

GP-select: Accelerating EM using
Adaptive Subspace Preselection

In this Chapter, we introduce a generalization of the preselection optimization method
introduced in Chapter 2 and further applied in Chapter 3. Whereas in those chapters,
the selection function used to preselect latent variables was hand-engineered for each
individual model, here we propose a model-independent nonparametric black-box way to
define a suitable selection function efficiently.

The work presented in this Chapter can be found in the following publications: Shelton
et al. (2014, 2017).

4.1 Introduction

We propose a nonparametric procedure to achieve fast inference in generative graphical
models when the number of latent states is very large. The approach is based on iterative
latent variable preselection, where we alternate between learning a ‘selection function’
to reveal the relevant latent variables, and using this to obtain a compact approximation
of the posterior distribution for EM; this can make inference possible where the number
of possible latent states is e.g. exponential in the number of latent variables, whereas
an exact approach would be computationally infeasible. We learn the selection function
entirely from the observed data and current EM state via Gaussian process regression.
This is by contrast with earlier approaches, where selection functions were manually-
designed for each problem setting. We show that our approach performs as well as these
bespoke selection functions on a wide variety of inference problems: in particular, for
the challenging case of a hierarchical model for object localization with occlusion, we

64

4.2. RELATED WORK 65

achieve results that match a customized state-of-the-art selection method, at a far lower
computational cost.

4.2 Related Work

The general idea of aiding inference in graphical models by learning a function that maps
from the observed data to a property of the latent variables is quite old. Early work in-
cludes the Helmholtz machine (Dayan et al., 1995) and its bottom-up connections trained
using the wake-sleep algorithm (Hinton et al., 1995). More recently, the idea has sur-
faced in the context of learning variational distributions with neural networks (Kingma
and Welling, 2014). A two-stage inference procedure has been discussed in the context
of computer vision (Yuille and Kersten, 2006) and neural inference (Körner et al., 1999).
Recently, researchers (Mnih and Gregor, 2014) have generalized this idea to learning in
arbitrary graphical models by training an “inference network” that efficiently implements
sampling from the posterior distribution.

GPs have recently been widely used to “learn" the results of complicated models in order
to accelerate inference and parameter selection. GP approximations have been used in lieu
of solving complex partial differential equations (Sacks et al., 1989; Currin et al., 1991),
to learn data-driven kernel functions for recommendation systems (Schwaighofer et al.,
2004), and recently for quantum chemistry (Rupp et al., 2012). Other work has used
GPs to simplify computations in approximate Bayesian computation (ABC) methods:
namely to model the likelihood function for inference (Wilkinson, 2014), to aid in mak-
ing Metropolis-Hastings (MH) decisions (Meeds and Welling, 2014), and to model the
discrepancies between simulated/observed data in parameter space simplification (Gut-
mann and Corander, 2015). Recently, instead of the typical choice of GPs for large scale
Bayesian optimization, neural networks have been used to learn an adaptive set of basis
functions for Bayesian linear regression (Snoek et al., 2015).

Our work follows the same high level philosophy in that we use GPs to approximate com-
plex/intractable probabilistic models. None of the prior work cited addresses our problem
setting, namely the selection of relevant latent variables by learning a nonparametric rel-
evance function, for use in Expectation Truncation (ET).

66 CHAPTER 4. GP-SELECT: ACCELERATING EM

4.3 Variable Selection for Accelerated Inference

Notation. We denote the observed data by the D × N matrix Y = (y(1), . . . ,y(N)),
where each vector y(n) = (y

(n)
1 , . . . , y

(n)
D)T is the nth observation in a D-dimensional

space. Similarly we define corresponding binary latent variables by the matrix S =

(s(1), . . . , s(N)) ∈ {0, 1}H×N where each s(n) = (s
(n)
1 . . . , s

(n)
H)T ∈ {0, 1}H is the nth

vector in the H-dimensional latent space, and for each individual hidden variable h =

1, . . . , H , the vector sh = (s
(1)
h . . . , s

(N)
h) ∈ {0, 1}N . Reduced latent spaces are denoted

by H ′, where H ′ � H . Note that although we restrict ourselves to binary latent variables
here, the procedure could in principle be generalized to variables with higher cardinality
(e.g. see (Exarchakis et al., 2012)). We denote the prior distribution over the latent vari-
ables as p(s|θ) and the likelihood of the data as p(y|s, θ). Using these expressions, the
posterior distribution over latent variables is

p(s(n)|y(n),Θ) =
p(s(n)|Θ) p(y(n)|s(n),Θ)∑

s ′ (n)

p(s ′ (n)|Θ) p(y(n)|s ′ (n),Θ)
. (4.1)

4.3.1 Selection via Expectation Truncation in EM

As discussed in the previous chapters, EM is an iterative algorithm to optimize the model
parameters of a given graphical model. EM iteratively optimizes a lower bound on the data
likelihood by inferring the posterior distribution over hidden variables given the current
parameters (the E-step), and then adjusting the parameters to maximize the likelihood
of the data averaged over this posterior (the M-step). When the number of latent states
to consider is large (e.g. exponential in the number of latent variables), the computation
of the posterior distribution in the E-step becomes intractable and approximations are
required.

ET is a meta algorithm, which improves convergence of the EM algorithm (Lücke and
Eggert, 2010). The main idea underlying ET is that the posterior probability mass is
concentrated in a small subspace of the full latent space. This is the case, for instance, if
for a given data point y(n) only a subset of the H latent variables s(n)

h , s
(n)
1 , s

(n)
2 , . . . , s

(n)
H

are relevant. Even when the probability mass is supported everywhere, it may still be
largely concentrated on a small number of the latents.

A selection function can be used to identify a subset of salient variables, denoted by H ′

where H ′ � H , which in turn is used to define a subset of states, denoted Kn, of the
possible state configurations of the space per data point. State configurations not in this

4.3. VARIABLE SELECTION FOR ACCELERATED INFERENCE 67

space (of variables deemed to be non-relevant) are fixed to 0 (assigned zero probability
mass). The posterior distribution in Equation (4.1) can then be approximated by a trun-
cated posterior distribution, computed on the reduced support,

p(s(n)|y(n),Θ)

≈ qn(s(n); Θ) =
p(s(n),y(n)|Θ) I(s(n) ∈ Kn)∑

s ′(n)∈Kn

p(s ′(n),y(n)|Θ)
, (4.2)

where Kn contains the latent states of the H ′ relevant variables for data point y(n), and
I(s ∈ Kn) = 1 if s ∈ Kn is true, and 0 otherwise. In other words, Equation (4.2) is
proportional to Equation (4.1) if s ∈ Kn (and zero otherwise). The set Kn contains only
states for which sh = 0 for all h that are not selected, i.e. all states where sh = 1 for non-
selected h are assigned zero probability, and the indices of the selected H ′ variables are
collected in I such that we can define Kn = {s | for all h 6∈ I : sh = 0}. This means that
there are fewer terms in the denominator of Equation (4.2) compared with Equation (4.1),
which affects the overall scaling of the terms. Equation (4.2) still remains proportional
to Equation (4.1) for the selected terms s ∈ Kn, however. The sum over Kn is much
more efficient than the sum for the full posterior, since it only needs to be computed over
the reduced set of latent variable states deemed relevant: the state configurations of the
irrelevant variables are fixed to be zero. The larger the variable selection parameter H ′

is, the closer the approximation will be to true EM, but available computational resources
dictate how large it can be. However as mentioned in Chapter 1, much smaller values of
H ′ have been empirically shown to achieve high accuracy.

4.3.2 ET with Affinity

One way of constructing a selection function is by first ranking the latent variables ac-
cording to an affinity function fh(y(n)) : RD 7→ R which directly reflects the relevance of
the latent variable sh. A natural choice for such a function is the one that approximates
the marginal posterior probability of each variable. We try to learn f as follows:

fh(y
(n)) = p̂

(n)
h ≈ p

(n)
h ≡ p(s

(n)
h = 1|y(n),Θ), (4.3)

meaning that the relevant variables will have greater marginal posterior probability ph.
See Figure 4.1 for a simplified illustration. When the latent variables s(n)

h=1, . . . , s
(n)
H in the

marginal posterior probability p̂(n) = p̂
(n)
h=1, . . . , p̂

(n)
H are conditionally independent given

a data point y(n), this affinity function correctly isolates the most relevant variables in the
posterior. To see this, consider the full joint p(s1, ...sh |y,Θ) in the case when a subset of

68 CHAPTER 4. GP-SELECT: ACCELERATING EM

1 3

Figure 4.1: Illustration of the affinity function for selection. The affinity approximates the
marginal posterior probability of each h = 1, . . . ,H latent variable (top), which identifies the
most relevant variables for a given data point y(n) (bottom). Here, the variables s1 and s3 yield
high affinity and would thus be considered relevant for y(n).

latents has values clamped to zero, i.e., sh = 0 for all h 6∈ I (compare Equation (4.2)).
We can then ask what the overall joint posterior mass is in this case. If we suppose the
latents to be conditionally independent, this total mass is given by a product of marginals
as follows: ∑

s with sh=0 for all h6∈I

p(s1, ...sH |y,Θ) =
∏
h6∈I

(1− p(sh = 1 |y,Θ)). (4.4)

We want this mass to be as large as possible as its complement is the posterior mass
that we discard with our approximation. If the affinity function correctly estimates the
marginals p(sh = 1 |y,Θ), then discarding those (H − H ′) marginals with the lowest
values is equivalent to discarding the space with the least posterior mass (compared to
discarding w.r.t. all alternative choices with the same number of latents). Even when this
strong assumption does not hold in practice (which is often the case) however, the affinity
can still correctly highlight relevant variables, and has been empirically shown to be quite
effective when dependencies exist (see e.g. the source separation tasks in (Sheikh et al.,
2014)).

Next, using all p̂(n)
h=1, . . . , p̂

(n)
H from the affinity function f(y(n)) = (f1(y(n)), . . . , fH(y(n))),

we define γ (p̂(n)) to simultaneously sort the indices of the latent variables in descending
order [of probability p̂(n)] and reduce the sorted set to the H ′ highest (most relevant) vari-
ables’ indices. To ensure that there is a non-zero probability of selecting each variable per
EM iteration, 10% of the H ′ indices are uniformly chosen from H at random (as noted
in Section 2.5). This prevents the possible propagation of errors from q(n) continuously

4.3. VARIABLE SELECTION FOR ACCELERATED INFERENCE 69

assigning small probabilities to a variable sh in early EM iterations, because the optimiza-
tion of q(n) in early iterations starts from randomly initialized sh. γ(p̂(n)) thus returns the
H ′ selected variable indices I deemed by the affinity to be relevant to the nth data point.
Finally, using the indices I from γ, we define I(I) to return an H ′-dimensional subset
of selected relevant latent states Kn for each data point y(n). All ‘non-relevant’ vari-
able states sh for all variables h 6∈ I are effectively set to 0 in Equation (4.2) by not
being present in the state set Kn. For example, let’s say that there are five sh, where
h ∈ {1, ..., 5}. We consider the case where only s1 and s2 are selected. The I function
will then return zeros for s3, s4, and s5, but will return both allowed possibilities 0 or 1

for s1 and s2. Thus a valid setting for the entire vector s can be s = [01000], but not
s = [01100].

Using f , I, and γ, we can define a selection function S : RD 7→ 2{1,...,H} to select
subsets Kn per data point y(n). Again, the goal is for the states Kn to contain most of the
probability mass p(s |y) and to be significantly smaller than the entire latent space. The
affinity based selection function to obtain the set of states Kn can be expressed as

S(y(n)) = I
[
γ
[
f(y(n))

]]
= Kn. (4.5)

To summarize, the main task is to formulate a general data-driven function to identify
relevant latent variables and to select the corresponding set of statesKn. This is performed
using GP regression in order to compute the truncated posterior in Equation (4.2) on the
reduced support Kn. With the combined effort of the above utility functions, we have
concisely defined the function S(y(n)) in Equation (4.5) to perform this selection.

4.3.3 Inference in EM with Selection

In each iteration of EM, the following occurs: prior to the E-step, the selection function
S(y(n)) in (4.5) is computed to select the most relevant states Kn, which are then used to
compute the truncated posterior distribution qn(s) in (4.2). The truncated posterior can
be computed using any standard inference method, such as exact inference or e.g. Gibbs
sampling from q(s) if inference is still intractable or further computational acceleration
is desired. The result of the E-step is then used to update the model parameters with
maximum likelihood in the M-step.

70 CHAPTER 4. GP-SELECT: ACCELERATING EM

4.4 GP-select

In previous work, the selection function S(y(n)) was a deterministic function derived in-
dividually for each model (see e.g. Shelton et al., 2011b, 2012a; Dai and Lücke, 2012a,b;
Bornschein et al., 2013; Sheikh et al., 2014; Shelton et al., 2015), specific examples of
which will be shown in Section 5.1. We now generalize the selection approach: instead
of predefining the form of S for variable selection, we want to learn it in a black-box
and model-free way based on the data. We learn S using Gaussian process (GP) regres-
sion (e.g. Rasmussen and Williams, 2005), which is a flexible nonparametric model and
scales cubically1 with the number of data points N but linearly with the number of latent
variables H . We define the affinity function fh as being drawn from a Gaussian process
model: fh(y(n)) ∼ GP (0, k(·, ·)), where k(·, ·) is the covariance kernel, which can be
flexibly parameterized to represent the relationship between variables. Again, we use fh
to approximate the marginal posterior probability ph that s(n)

h = 1. A nice property of
Gaussian processes is that the kernel matrix K need only be computed once (until the
kernel function hyperparameters are updated) to approximate p(n)

h for the entire H × N
set of latent variables S.

Thus, prior to each E-step in each EM iteration, within each calculation of the selection
function, we calculate the affinity using a GP to regress the expected values of the latent
variables 〈S〉 onto the observed data Y. Specifically, we train on ph from the previous
EM iteration (where ph is equal to 〈sh〉), for training data of D = {(y(n), 〈s(n)〉q)|n =

1, . . . , N}, where we recall that qn(s(n)) is the approximate posterior distribution for s(n)

in Equation (4.2). Note that we do not use a sigmoid link, hence this is clearly not a correct
estimate of a probability (it can be negative, or greater than one). From the selection
perspective, however, it is not necessary to avoid these pathologies, as we only want an
ordering of the variables. A correct GP classification approach with a properly defined
likelihood will no longer have a marginal Gaussian distribution, and we would no longer
be able to trivially express the posterior means of different functions with the same inputs,
without considerable extra computation.

In the first EM iteration, the expectations 〈s(n)〉q are initialized randomly; in each subse-
quent EM iteration, the expectations w.r.t. the Kn-truncated posterior q(s) are used. The
EM algorithm is run for T iterations and the hyperparameters of the kernel are optimized
by maximum likelihood every T ∗ EM iterations.

For each data point y(n) and latent variable sh we compute the predicted mean of the GP
by leaving this data point out of the training set and considering all others, which is called

1If the scaling with N is still too expensive, an incomplete Cholesky approximation is used, with cost
linear in N and quadratic in the rank Q of the approximation (see Section 4.5.3 for details).

4.5. EXPERIMENTS 71

leave-one-out (LOO) prediction. It can be shown that this can be implemented efficiently
(see Section 5.4.2 in Rasmussen and Williams, 2005), and we use this result to update
the predicted affinity as follows:

p̂
(n)
h ← 〈s

(n)
h 〉qn −

[K−1〈sh〉qn]nn
[K−1]nn

. (4.6)

Equation (4.6) can be efficiently implemented for all latent variables h = 1, . . . , H and
all data points n = 1, . . . , N using matrix operations, thereby requiring only one kernel
matrix inversion for the entire data set.

Substituting Equation (4.6) for f in the affinity based selection function (4.5) ,

S(y(n)) = I
[
γ

[
〈s(n)
h 〉qn −

[K−1〈sh〉qn]nn
[K−1]nn

]]
= I

[
γ
[
f(y(n))

]]
= Kn

we call the entire process GP-select. An outline is shown in Algorithm 1.

Algorithm 1 GP-select to accelerate inference in Expectation Maximization
for EM iterations t = 1, . . . , T do

initialize all latent variables expectations 〈s(n)
h 〉qn,t

for data point n = 1, . . . , N do
compute affinity of all latent variables p̂(n)

t using Eq. (4.6)
compute subset of relevant states Kn using Eq. (4.5)
compute truncated posterior qn,t(s(n)) in E-step: Eq. (4.2)
update model parameters in M-step, e.g. as in Sec. 4.5.1
store 〈s(n)

h 〉qn,t for p(n) in EM iteration t+ 1
end for
optimize kernel hyperparams every T ∗ EM iterations

end for

4.5 Experiments

We apply our GP-select inference approach to five different probabilistic generative mod-
els. First, we considered three sparse coding models (binary sparse coding, spike-and-
slab, nonlinear spike-and-slab), where the relationship between the observed and latent
variables is known to be complex and nonlinear. Second, we apply GP-select to a simple
Gaussian Mixture Model (GMM), to both provide functional intuition of approach and
to explicitly visualize the form of the learned regression function. Finally, we apply our
approach to a recent hierarchical model for translation invariant occlusive components
analysis (Dai and Lücke, 2012a; Dai et al., 2013; Dai and Lücke, 2014).

72 CHAPTER 4. GP-SELECT: ACCELERATING EM

4.5.1 Sparse Coding Models

Many types of natural data are composed of potentially many component types, but any
data point often only contains a very small number of this potentially large set of com-
ponents. For the introductory example of toys on the nursery floor, for instance, there
are many different toys that can potentially be in a given image but there is typically
only a relatively small number of toys actually appearing in any one image. Another
example is a sound played by a piano at a given time t. While the sound can contain
waveforms generated by pressing any of the 88 piano keys, there are only relatively few
keys (typically much smaller than ten) that actually generated the sound. Sparse Coding
algorithms model such data properties by providing a large number of hidden variables
(potential data components) but assigning non-zero (or significantly different from zero)
values only to a small subset of components (those actually appearing). Sparse coding
algorithms are typically used for tasks such as denoising (Elad and Aharon, 2006; Mairal
et al., 2009b), inpainting (Mairal et al., 2009b,a; Lázaro-gredilla and Titsias, 2011), clas-
sification (LeCun and Cortes, 2010; Lázaro-gredilla and Titsias, 2011; Raina et al., 2007,
e.g. MNIST data set2, the flowers data set3), transfer learning (Raina et al., 2007), collab-
orative filtering (Lázaro-gredilla and Titsias, 2011) and are important models for neuro-
sensory processing (Olshausen and Field, 1997; Zylberberg et al., 2011; Bornschein et al.,
2013; Sheikh et al., 2014, and many more). A variety of sparse coding models have been
successfully scaled to high-dimensional latent spaces with the use of selection (Henniges
et al., 2010; Bornschein et al., 2013; Sheikh et al., 2014) or selection combined with Gibbs
sampling (Shelton et al., 2011b, 2012a, 2015) inference approaches. Latent variables were
selected in these earlier works using selection functions that were individually defined for
each model. In order to demonstrate our method of autonomously learned selection func-
tions, we consider three of these sparse generative models, and perform inference in EM
with our GP-select approach instead of a hand-crafted selection function. The models
are relevant for different tasks such as classification (e.g., binary sparse coding), source
separations and denoising (linear spike-and-slab sparse coding) or sparse encoding and
extraction of interpretable image components (nonlinear sparse coding). Note that when
it is obvious from context, we drop the notation referring to each data point n in order to
make the equations more concise.

2The MNIST data set (LeCun and Cortes, 2010): http://yann.lecun.com/exdb/mnist/
3The flowers data set (Nilsback and Zisserman, 2006): http://www.robots.ox.ac.uk/∼vgg/data/flowers/

4.5. EXPERIMENTS 73

The models and their parameters are:

A. Binary sparse coding:

latents: s ∼ Bern(s|π) =
∏H

h=1 π
sh
(
1− π

)1−sh

observations: y ∼ N (y;W s, σ2I)

parameters: W =
(N∑
n=1

y(n) 〈s 〉Tqn
) (N∑

n=1

〈
s sT

〉
qn

)−1

σ2 =
1

ND

∑
n

〈∣∣∣∣y(n) −W s
∣∣∣∣2〉

qn

π =
1

N

∑
n

|
〈
s
〉
qn
|, where |x| = 1

H

∑
h

xh

where W ∈ RD×H denotes the components / dictionary elements and π parameter-
izes the sparsity (see e.g. (Henniges et al., 2010)).

B. Spike-and-slab sparse coding:

latents: s = b� z where b ∼ Bern(b|π) and z ∼ N (z; µ,Σh)

observations: y ∼ N (y;W s, σ2I)

parameters: W =

∑N
n=1 y

(n) 〈s� z〉Tn∑N
n=1 〈(s� z)(s� z)T〉n

π =
1

N

N∑
n=1

〈s〉n

σ2 =
N∑
n=1

[〈
(s� z)(s� z)T

〉
n
−
〈
s sT

〉
n
� µµT

]
�
(N∑
n=1

[〈
s sT

〉
n

])−1

µpr =

∑N
n=1 〈s� z〉n∑N
n=1 〈s〉n

σ2
pr =

1

N

N∑
n=1

[
y (n)(y (n))T −W

[
〈(s� z)〉n 〈(s� z)〉Tn

]
WT

]
where the point-wise multiplication of the two latent vectors, i.e., (s� z)h = sh zh
generates a ‘spike-and-slab’ distributed variable (s� z), that has either continuous
values or exact zero entries (e.g. (Lázaro-gredilla and Titsias, 2011; Goodfellow
et al., 2013; Sheikh et al., 2014)).

74 CHAPTER 4. GP-SELECT: ACCELERATING EM

C. Nonlinear Spike-and-slab sparse coding:

latents: s = b� z where b ∼ Bern(b|π)

and z ∼ N (z; µpr, σ
2)

observations: y ∼ N (y; max
h
{shWh}, σ2I)

parameters: Ŵhd =
〈shyd〉∗

〈s2
d〉∗

π̂ = 〈I(s)〉

σ̂2 =
〈
Wdhsh − y(n)

d

〉∗
µ̂pr = 〈sh〉∗ σ̂2

pr = 〈(sh − µ̂pr)
2〉∗

Where expectations 〈 . 〉∗ mean:

〈f(s)〉∗ =
∑
n

∫
s
p(s|y(n),Θ) f(s) I(h is max) ds∫
s
p(s|y(n),Θ) I(h is max) ds

where I is the indicator function denoting the domain to integrate over, namely
where h is the maximum. Using 〈f(s)〉∗ allows for the condensed expression of
the update equations shown above. The mean of the Gaussian for each y(n) is
centered at maxh{shWh}, where maxh is a nonlinearity that considers all H latent
components and takes the h yielding the maximum value for shWh (Lücke and
Sahani, 2008; Shelton et al., 2012a; Bornschein et al., 2013; Shelton et al., 2015),
instead of centering the data at the linear combination of

∑
h shWh = W s.

In the above models, inference with the truncated posterior of Equation (4.2) using hand-
crafted selection functions Sh(y(n)) to obtain the subset of states Kn [of selected relevant
variables s(y(n))], shown in Equation (4.5), has yielded results as good or more robust
performance than exact inference (converging less frequently to local optima than exact
inference; see earlier references for details). For models A and C, the hand-constructed
function approximating f(y(n)), for substitution in Equation (4.5), was the cosine simi-
larity between the weights Wh (e.g. dictionary elements, components, etc.) associated
with each latent variable sh and each data point y(n): f(y(n)) = (WT

h / ||Wh||)y(n). For
model B, the constructed affinity function was the data likelihood given a singleton state:
f(y(n)) = p(y(n)|s = sh,Θ), where sh represents a singleton state in which only the entry
h is non-zero.

The goal of these experiments is to demonstrate the performance of GP-select and the
effects/benefits of using different selection functions. To do this, we consider artificial
data generated according to each sparse coding model, and thus with known ground-
truth parameters. As discussed above, we could also apply the sparse coding models
using GP-select to other application domains listed, but that is not the focus of these
experiments. We generate N = 2, 000 data points consisting of D = 5×5 = 25 observed

4.5. EXPERIMENTS 75

dimensions and H = 10 latent components according to each of the models A-C: N
images of randomly selected overlapping ‘bars’ with varying intensities for models B and
C, and additive Gaussian noise parameterized by ground-truth σ2 = 2 and we choose
H ′ = 5, (e.g. following the spike-and-slab prior). On average, each data point contains 2

bars, i.e. ground-truth is πH = 2, and we choose H ′ = 5. With this choice, we can select
sufficiently many latents for virtually all data points.

For each of the models considered, we run 10 repetitions of each of the following set of
experiments: (1) selection using the respective hand-crafted selection function, (2) GP-
select using a linear covariance kernel, (3) GP-select using a Radial Basis Function (RBF)
covariance kernel, and (4) GP-select using a kernel composed by adding the following ker-
nels: RBF, linear, bias and white noise kernels, which we will term the composition ker-
nel. As hyperparameters of kernels are learned, the composition kernel (4) can adapt itself
to the data and only use the kernel components required. See (Rasmussen and Williams,
2005, Chapter 4, Section 4.2.4) for a discussion on kernel adaptation. Kernel parameters
were model-selected via maximum marginal likelihood every 10 EM iterations. For mod-
els A and B, inference was performed exactly using the truncated posterior (4.2), but as
exact inference is analytically intractable in model C, inference was performed by draw-
ing Gibbs samples from the truncated space (Shelton et al., 2011b, 2012a, 2015). We run
all models until convergence.

Results are shown in Figure 4.2. In all experiments, the GP-select approach was able
to infer ground-truth parameters as well as the hand-crafted function. For models where
the cosine similarity was used (in A and C), GP regression with a linear kernel quickly
learned the ground-truth parameters, and hence fewer iterations of EM were necessary.
In other words, even without providing GP-select explicit weights W as required for the
hand-crafted function, its affinity function using GP regression (4.6) learned a similar
enough function to quickly yield identical results. Furthermore, in the model with a less
straight-forward hand-crafted function (in the spike-and-slab model of B), only GP re-
gression with an RBF kernel was able to recover ground-truth parameters. In this case
(model B), GP-select using an RBF kernel recovered the ground-truth ‘bars’ in 7 out of
10 repetitions, whereas the hand-crafted function recovered the bases in 8 instances. For
the remaining models, GP-select converged to the ground-truth parameters with the same
average frequency as the hand-crafted functions.

Finally, we have observed empirically that the composition kernel is flexible enough to
subsume all other kernels: the variance of the irrelevant kernels dropped to zero in simu-
lations. This suggests the composition kernel is a good choice for general use.

76 CHAPTER 4. GP-SELECT: ACCELERATING EM

A: Binary SC

E

Data Whand-derived WGP-select

B: Spike & Slab SC

C: Nonlinear Spike & Slab SC

Models

Figure 4.2: Sparse coding models results comparing GP-select with a successful hand-derived
selection function. Results are shown on artificial ground-truth data with H = 10 latent variables
and H ′ = 5 preselected variables for: A Binary sparse coding, B Spike-and-slab sparse coding,
and C Nonlinear spike-and-slab sparse coding. First column: Example data points y(n) generated
by each of the models. Middle column: Converged dictionary elements W learned by the hand-
crafted selection functions. Third column: Converged dictionary elementsW learned by GP-select
with H ′ = 5 using the kernel with best performance (matching that of inference with hand-crafted
selection function). In all cases, the model using the GP-select function converged to the ground-
truth solution, just as the hand-crafted selection functions did.

4.5.2 Gaussian Mixture Model

Next, we apply GP-select to a simple example, a Gaussian Mixture Model, where the flex-
ibility of the approach can be easily and intuitively visualized. Furthermore, the GMMs
flexibility allows us to explicitly visualize the effect of different selection functions. A
demonstration and code for the GMM application is provided in (Dai, 2016).

The model of the data likelihood is

p(y(n)|µc, σc, π) =
C∑
c=1

N (y(n);µc, σc) πc, (4.7)

where C is the number of mixture components and πc is the prior probability of a given
cluster; the task is to assign each data point to its latent cluster.

The training data used for GP regression wasD = {(y(n), 〈s(n)
h 〉qn)|n = 1, . . . , N}, where

the targets were the expected cluster responsibilities (posterior probability distribution for
each cluster) for all data points, 〈sh〉q, and we use one-hot encoding for cluster iden-
tity. With this, we apply our GP-select approach to this model, computing the selection

4.5. EXPERIMENTS 77

0 4

3.5

0 4

3.5

0 4

3.5

0 4

3.5

0 4

3.5

0 4

3.5

4

RBF kernel

Linear kernel

EM iteration 0 EM iteration 1 EM iteration 20

EM iteration 0 EM iteration 10 EM iteration 20

Figure 4.3: Gaussian Mixture Model results using GP-select (selection of C ′ = 2 in a C = 3
cluster scenario) for inference on 2-dimensional observed data (for illustrative visualization).
Progress of the inference is shown using (row one) an RBF covariance kernel in the regression,
and (row two) a linear covariance kernel. For each iteration shown, we see (1) the observed
data and their inferred cluster assignments and (2) the C corresponding GP regression functions
learned/used for GP-select in that iteration. Different iterations are pictured due to different
convergence rates. As shown, inference with GP-select using a linear kernel is unable to assign
the data points to the appropriate clusters, whereas GP-select with an RBF kernel succeeds.

function according to Equation (4.5) with affinity f defined by GP regression (4.6) and
following the approximate EM approach as in the previous experiments. In these experi-
ments we consider two scenarios for EM learning of the data likelihood in Equation (4.7):
GP-select with an RBF covariance kernel and a linear covariance kernel. We do not in-
clude the composition kernel suggested (based on experiments) in Section 4.1, as the goal
of the current experiments is to show the effects of using the ‘wrong’ kernel. These ef-
fects would further support the use of the flexible composition kernel in general, as it can
subsume both kernels considered in the current experiments (RBF and linear).

To easily visualize the output, we generate 2-dimensional observed data (y(n) ∈ RD=2)
from C = 3 clusters – first with randomly assigned cluster means, and second such that
the means of the clusters lie roughly on a line. In the GP-select experiments, we select
C ′ = 2 clusters from the full set, and run 40 EM iterations for both kernel choices (linear
and RBF). Note that for mixture models, the notation ofC ′ selected clusters of theC set is
analogous to the H ′ selected latent variables from the H full set, as described in the non-
mixture model setting, and the GP-select algorithm proceeds unchanged. We randomly
initialize the variance of the clusters σc and initialize the cluster means µc at randomly
selected data points. Results are shown in Figure 4.3.

78 CHAPTER 4. GP-SELECT: ACCELERATING EM

With cluster parameters initialized randomly on these data, the linear GP regression pre-
diction cannot correctly assign the data to their clusters (as seen in Figure 4.3B), but the
nonlinear approach successfully and easily finds the ground-truth clusters (Figure 4.3A).
Furthermore, even when both approaches were initialized in the optimal solution, the
cluster assignments from GP-select with a linear kernel quickly wandered away from the
optimal solution and were identical to random initialization, converging to the same result
shown in iteration 20 of Figure 4.3B). The RBF kernel cluster assignments remained at
the optimal solution even with number of selected clusters set to C ′ = 1.

These experiments demonstrate that the selection function needs to be flexible even for
very simple models, and that nonlinear selection functions are an essential tool even in
such apparently straightforward cases.

4.5.3 Translation Invariant Occlusive Models

Now that we have verified that GP-select can be applied to various generative graphical
models and converge to ground-truth parameters, we consider a more challenging model
that addresses a problem in computer vision: translations of objects in a scene.

Model. Translation invariant models address the problem that, e.g. visual objects can
appear in any location of an image. Probabilistic models for translation invariance are
particularly appealing as they allow to separately infer object positions and object type,
making them very interpretable and powerful tools for image processing.

Translation invariant models are particularly difficult to optimize, however, because they
must consider a massive latent variable space: evaluating multiple objects and locations
in a scene leads a latent space complexity of the number of locations exponentiated by
the number of objects. Inference in such a massive latent space heavily relies on the idea
of variable selection to reduce the number of candidate objects and locations. In par-
ticular, hand-engineered selection functions that consider translational invariance have
been successfully applied to this type of model (Dai and Lücke, 2012b, 2014; Dai et al.,
2013). The model we consider in these experiments is the Invariant Exclusive Compo-
nent Analysis (InvECA) model (Dai and Lücke, 2012b; Dai et al., 2013). In contrast to
linear models, the InvECA model requires two sets of parameters for the encoding of im-
age components: component masks and component features. Component masks describe
where an image component is located and component features describe what a component
encodes. High values of mask parameters encode the pixels most associated with a com-
ponent h but the encoding has to be understood relative to a global component position.
Until now, the selection function used to reduce latent space complexity in this model has
been constructed as follows. First, the candidate locations of all the objects in the model

4.5. EXPERIMENTS 79

are predicted. Then, a subset of candidate objects that might appear in the image are se-
lected according to those predicted locations. Next, the subset of states Kn is constructed
according to the combinations of the possible locations and numbers of candidate objects.
The posterior distribution is then computed following Equation (4.2).

This selection system is very costly: the selection function has parameters which need to
be hand-tuned, e.g. the number of representative features, and it needs to scan through
the entire image, considering all possible locations, which becomes computationally de-
manding for large-scale experiments. To maximally exploit the capabilities of GP-select’s
flexibility, we directly use the GP regression model to predict the possible locations of a
component without introducing any knowledge of translation invariance into the selection
function. In this work, a GP regression model is fitted from the input image to marginal
posterior probabilities of individual objects appearing at all possible locations. Therefore,
the input to the GP is the image to be inferred and the output is a score for each pos-
sible location of each object in the model. For example, when learning 10 objects in a
D = 30 × 30 pixel image patch, the output dimensionality of GP-select is 9, 000. This
task is computationally feasible, since GP models scale linearly with output dimensional-
ity. The inference of components’ locations with GP-select is significantly faster than the
selection function in the original work, as it avoids explicitly scanning through the image.

Although GP-select has some additional computations, e.g. parameters to tune, there are
many options to reduce these computational costs. First, we can approximate the full
N × N Gram matrix by an incomplete Cholesky approximation (Fine and Scheinberg,
2002) resulting in a cost of O(N × Q), where Q � N is the rank of the Cholesky ap-
proximation. Second, we may reduce the update frequency of the kernel hyperparameters
to be computed only every T ∗ EM iterations, where a T ∗ > 1 represents a corresponding
computation reduction. The combination of the Cholesky approximation plus infrequent
updates will have the following benefits: a factor of five speedup for infrequent updates,
and a factor of (N −Q)2 speedup from incomplete Cholesky, where Q is the rank of the
Cholesky approximation and N is the number of original data points.

COIL data set. In all experiments, we consider an image data set used in previous work:
data were generated using 16 objects extracted from the COIL-100 image data set (Nene
et al., 1996), downscaled to D = 10 × 10 pixels, and segmented out from the black
background. A given image was generated by randomly selecting a subset of the 16

objects, where each object has a probability of 0.2 of appearing. These objects were
then placed at random positions on a 30 × 30 black image. When the objects overlap,
they occlude each other with a different random depth order for each image. In total,
N = 2, 000 images were generated for the data set (examples shown in Figure 4.4).

Experiments. The task of the InvECA model is to discover the visual components (i.e.

80 CHAPTER 4. GP-SELECT: ACCELERATING EM

Figure 4.4: COIL-100 data set (Nene et al., 1996): A handful of data points generated using ob-
jects from the COIL-100 data set and used in experiments with the Invariant Exclusive Component
Analysis (InvECA) model, showing the occluding objects to be learned.

the images of 16 objects) from the image set without any label information. We com-
pare the visual components learned by using four different selection functions in the In-
vECA model: the hand-crafted selection function used in the original work by Dai and
Lücke (2012b), GP-select updated every iteration, GP-select updated every T∗ = 5 iter-
ations, and GP-select with incomplete Cholesky decomposition updated every iteration,
or T ∗ = 1 (in this manner we isolate the improvements due to Cholesky from those due
to infrequent updates). In these experiments, the parameters of GP-select are optimized
at the end of each T∗ EM iteration(s), using a maximum of 20 gradient updates. The
number of objects to be learned is H = 16 and the algorithm preselects H ′ = 5 objects
for each data point. The kernel used was the composition kernel, as suggested in Section
4.1, although after fitting the hyperparameters only the RBF kernel remained with large
variance (i.e. a linear kernel alone would not have produced good variable selection, thus
the flexible composition kernel was further shown to be a good choice).

Results.

All four versions of the InvECA model with their respective selection functions success-
fully recovered all 16 objects in our modified COIL image set. The learned object repre-
sentations with GP-select are shown in Figure 4.5. Four additional components developed
into representations, however these all had very low mask values, allowing them to easily
be distinguished from other true components.

Next, we compare the accuracy of the four selection functions. For this, we collected
the object locations (pixels) indicated by each selection function after all EM iterations,
applied the selection functions (for the GP selection functions, this was using the final
function learned after all EM iterations) to the entire image data set again, then compared
these results with the ground-truth location of all of the objects in the data set. The ac-
curacy of the predicted locations was then computed by comparing the distance of all
ground-truth object location to the location of the top candidate locations from each se-
lection function. See Figure 4.6 for a histogram of these distances and the corresponding

4.5. EXPERIMENTS 81

Mask

Image component

Image component
with mask >0.5

A B C

A:

B:

C:

Figure 4.5: Image components and their masks learned by GP-select with the Translation Invari-
ant model. GP-select learned all objects in the data set. The figure shows: A the mask of each
component, B the learned image components, and C only the area of the learned components
that had a mask > 0.5. For the second three-column block of images, the same labels of the first
three-column block hold.

accuracy for all selection functions. Note that the percentages in the histogram are plot-
ted in log scale. Also, as a baseline verification, we computed and compared the pseudo
log likelihood (Dai et al., 2013) of the original selection function to the three GP-select
based ones. The pseudo log likelihood for all selection functions is shown in Figure 4.7.
Figures 4.6-4.7 show that all four selection functions can very accurately predict the loca-
tions of all the objects in the data set – the GP-select selection functions yields no loss in
inference performance in comparison to the original hand-engineered selection function.
Even those using speed-considerate approximations (incomplete Cholesky decomposition
of the kernel matrix (GP IChol) and updating kernel hyperparameters only every 5 EM
iterations (GP every5)) have indistinguishable prediction accuracy on the task.

An analysis of the benefits indicate that, as GP-select avoids explicitly scanning through
the image, the time to infer the location of an object is significantly reduced compared
to the hand-crafted function. GP-select requires 22.1 seconds on a single CPU core to
infer the locations of objects across the whole image set, while the hand-crafted function
requires 1830.9 seconds. In the original work, the selection function was implemented
with GPU acceleration and parallelization. Although we must compute the kernel hy-

82 CHAPTER 4. GP-SELECT: ACCELERATING EM

0 5 10 15 20
0.01%

0.1%

1.0%

10.0%

100.0%

GP IChol

GP every5

GP

hand-craft

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy
 (

lo
g
)

distance (pixels) from ground-truth

1 6 30

selection functions:

2 3 4

Figure 4.6: Prediction accuracy of the four selection functions in the InvECA model. Functions
depicted in the figures: GP-select with no modifications (GP, red), the incomplete Cholesky de-
composition (GP IChol, blue), with updated kernel hyperparameters every 5 EM iterations (GP
every5, green), and with hand-crafted selection (hand-craft, cyan). Shown: the log-scale his-
togram of the prediction accuracy for the four selection functions, measured by the distance each
function’s predicted object location was to the ground-truth object location. All bars of the selec-
tion functions show very similar accuracy for the various distances.

perparameters for GP-select, it is important to note that the hyperparameters need not be
fit perfectly each iteration – for the purposes of our approach, a decent approximation
suffices for excellent variable selection. In this experiment, updating the parameters of
GP-select with 10 gradient steps took about 390 seconds for the full-rank kernel matrix.
When we compute the incomplete Cholesky decomposition while inverting the covari-
ance matrix, compute time was reduced to 194 seconds (corresponding to the (N − Q)2

speedup, where Q is the rank of the Cholesky approximation), with minimal loss in accu-
racy. Furthermore, when updating the GP-select hyperparameters only every 5 iterations,
average compute time was reduced by another one fifth, again without loss in accuracy.

4.6 Discussion

We have proposed a means of achieving fast EM inference in Bayesian generative models,
by learning an approximate selection function to determine relevant latent variables for
each observed variable. The process of learning the relevance functions is interleaved with
the EM steps, and these functions are used in obtaining an approximate posterior distribu-
tion in the subsequent EM iteration. The functions themselves are learned via Gaussian
process regression, and do not require domain-specific engineering, unlike previous selec-

4.6. DISCUSSION 83

0 20 40 60 80 100 120 140
−2

−1

0

1

2

3

4 ×107

GP IChol
GP every5
GP
hand-craft

selection functions:

number of EM iterations

p
se

u
d

o
 l
o
g

 m
a
rg

in
a
l
lik

e
lih

o
o
d

Figure 4.7: Baseline comparison of the four selection functions in the InvECA model. Func-
tions depicted in the figures are identical to those in Figure 4.6. Shown: the convergence of the
pseudo log marginal likelihood [of the model parameters learned at each EM iteration] for the
four selection functions over all EM iterations. After about 40 EM iterations, all selection function
versions of the algorithm converge to the same likelihood solution. Simultaneously, the GP-select
approaches exhibit no loss of accuracy compared to the hand-crafted function, and ‘GP IChol’
represents a factor of 100 speedup vs. ‘GP’, and ‘GP every5’ represents a factor of 5 speedup.

tion functions. In experiments on mixtures and sparse coding models with interpretable
output, the learned selection functions behaved in accordance with our expectations for
the posterior distribution over the latents.

The significant benefit we show empirically is that by learning the selection function in a
general and flexible nonparametric way, we can avoid using potentially expensive hand-
engineered selection functions. Cost reduction is both in terms of required expertise in
the problem domain, and computation time in identifying the relevant latent variables.
Inference using our approach required 22.1 seconds on a single CPU core, versus 1830.9
seconds with the original hand-crafted function for the complex hierarchical model of
(Dai et al., 2013).

Very large data sets would however pose a challenge to the efficiency of our approach.
Namely, in computing the GP, the matrix inversion in the LOO Equation (4.6) would
be resource-heavy. We were able to improve the efficiency of this step by using the
incomplete Cholesky approximation, but further measures would be necessary for very
large scale applications. Possibilities to accomplish this are discussed in the final Section.

A possible limitation to our approach is that GP regression assumes a smooth relation
between the input and target variables, but if the real relation has discontinuities then a GP

84 CHAPTER 4. GP-SELECT: ACCELERATING EM

will be a poorer approximation than a selection function that is explicitly discontinuous.
Furthermore, GPs have parameters that need to be adjusted, e.g. after some amount of
EM iterations, whereas a prebaked hand-crafted selection function might not. Although
the selection function explicitly crafted for the InvECA model indeed has parameters that
need to be tuned, this may not always be the case. Thus, in such scenarios a GP based
selection function could be more costly.

Chapter 5

Conclusion and Discussion

In this work, we have proposed a means of achieving fast EM inference in Bayesian
generative models. We do this by learning an approximate selection function to determine
relevant latent variables for each observed variable prior to each E-step and then compute
the posterior distribution in the E-step using the set of just these selected latent variables.
The process of learning the relevance functions is interleaved with the EM steps, and these
functions are used in obtaining an approximate posterior distribution in the subsequent
EM iteration.

In Chapter 2, we introduced Select and Sample, the basic approximate inference approach
which was built upon and applied in the subsequent Chapters. This approach combines
latent variable preselection with Markov Chain Monte Carlo (MCMC) sampling methods
for the acceleration of inference and learning with EM, in order to capture the strengths of
each approach in representing complex posterior distributions and simultaneously reduce
computational costs. There, the selection function used to identify the relevant latent vari-
ables was hand-derived for each individual model and required expertise with the problem
domain. Our results with a simple sparse coding model using our approach show signifi-
cant reduction in computational resources. In Chapter 3, we applied the Select and Sample
approach to a more complex and novel sparse coding model designed to model low-level
image components (such as edge-like structures and their occlusions). The model used
a complex prior distribution (spike-and-slab) – to model the presence/absence of e.g. an
edge as well as its pixel intensity – and had a nonlinearity in the data likelihood (the non-
linear max combination rule) to target occlusions, i.e. dictionary elements correspond to
image components that can occlude each other. We called this model SSMCA. The nonlin-
earity in the data likelihood lead to a highly multi-modal complex posterior distribution,
thus in order to adequately sample this distribution we developed an exact Gibbs sampler
based on the exact form of the posterior distribution. Results showed that SSMCA can

85

86 CHAPTER 5. CONCLUSION AND DISCUSSION

model the generating process of images with occlusions, including extracting individual
edge-like structures that occlude each other, and produces results that are neurally con-
sistent. Finally, in Chapter 4 we introduced a generalization of the Select and Sample
method used in the previous chapters. There, the selection function used to preselect rel-
evant latent variables was hand-engineered for each individual model, here we propose a
model-independent non-parametric black-box way to define a suitable selection function
efficiently. Namely, we learned the selection function entirely from the observed data
and current EM state using Gaussian process regression. We have named this approach
GP-select. Empirical experiments showed equivalent performance between our inference
algorithm (using GP-select to preselect variable) and algorithms of previous work (us-
ing a complex hand-engineered selection function for preselection). At the same time,
GP-select is straightforward to implement and had a far lower computational cost.

Ideally, the selection function would be further generalized such that it would not require
a hand-chosen parameter to specify how many latent variables it can preselect. Instead, it
would be advantageous to have the number of preselected variablesH ′ be adaptive and set
based on the actual sparsity in the data. An adaptive H ′ could improve the current work:
computational resources could be spared should H ′ have been set ‘too high’ and more
variables be preselected than the data necessitates, or likewise adaptation could improve
inference accuracy should H ′ have been set too low and too few variables be preselected.

Considering future directions, a major area where further performance gains might be
expected is in improving computational performance, since we expect the greatest advan-
tages of GP-select to occur for complex models at large scale. For instance, kernel ridge
regression may be parallelized (Zhang et al., 2014), or the problem may be solved in the
primal via random Fourier features (Le et al., 2013). Furthermore, there are many re-
cent developments regarding the scaling up of GP inference to large-scale problems, e.g.
sparse GP approximation (Lawrence et al., 2002), stochastic variational inference (Hens-
man et al., 2013, 2012), using parallelization techniques and GPU acceleration (Dai et al.,
2014), or in combination with stochastic gradient descent (Bottou and Bousquet, 2008).
For instance, for very large data sets where the main model is typically trained with mini-
batch learning, stochastic variational inference can be used for GP fitting as in (Hensman
et al., 2013) and the kernel parameters can be efficiently updated each (or only every T ∗

few) iteration with respect to a mini-batch. Another way to reduce computational costs
would be to replace the selection step in Select and Sample with the black-box approach
of GP-select, namely to draw samples from the posterior distribution truncated to the
reduced variable set selected by GP regression.

Bibliography

Beck, J. M., Ma, W. J., Kiani, R., Churchland, T. H. A. K., Roitman, J., Shadlen, M. N.,
Latham, P. E., Pouget, A., 2008. Probabilistic population codes for bayesian decision
making. Neuron 60, 1142–1152.

Berkes, P., Orban, G., Lengyel, M., Fiser, J., Jan. 2011a. Spontaneous Cortical Ac-
tivity Reveals Hallmarks of an Optimal Internal Model of the Environment. Science
331 (6013), 83–87.

Berkes, P., Turner, R., Fiser, J., 2011b. The army of one (sample): the characteristics
of sampling-based probabilistic neural representations. In: Frontiers in Neuroscience.
Computational and Systems Neuroscience.

Bornschein, J., Dai, Z., Lücke, J., 2010. Approximate EM learning on large computer
clusters. In: NIPS Workshop: Learning on Cores, Clusters and Clouds.

Bornschein, J., Henniges, M., Lücke, J., 06 2013. Are V1 simple cells optimized for
visual occlusions? A comparative study. PLoS Computational Biology 9 (6), 1–16.

Bottou, L., Bousquet, O., 2008. The tradeoffs of large scale learning. In: Platt, J. C.,
Koller, D., Singer, Y., Roweis, S. T. (Eds.), Advances in Neural Information Processing
Systems 20. pp. 161–168.

Chen, S. S., Donoho, D. L., Michael, Saunders, A., 1998. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing 20, 33–61.

Currin, C., Mitchell, T., Morris, M., Ylvisaker, D., 1991. Bayesian prediction of determin-
istic functions, with applications to the design and analysis of computer experiments.
J. American Statistical Association 86 (416), 953–963.

Dai, Z., 2016. GP-select Demo on Gaussian mixture models.
https://github.com/fatflake/GP-select-Code/blob/master/GMM_demo.ipynb.

87

88 BIBLIOGRAPHY

Dai, Z., Damianou, A., Hensman, J., Lawrence, N., 2014. Gaussian process models with
parallelization and gpu acceleration. In: NIPS Workshop on Modern non-parametrics:
automating the learning pipeline.

Dai, Z., Exarchakis, G., Lücke, J., 2013. What are the invariant occlusive components of
image patches? a probabilistic generative approach. In: Advances in Neural Informa-
tion Processing Systems. pp. 243–251.

Dai, Z., Lücke, J., 2012a. Autonomous cleaning of corrupted scanned documents – a
generative modeling approach. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3338–3345.

Dai, Z., Lücke, J., 2012b. Unsupervised learning of translation invariant occlusive com-
ponents. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2400–
2407.

Dai, Z., Lücke, J., 2014. Autonomous document cleaning – a generative approach to
reconstruct strongly corrupted scanned texts. IEEE Transactions on Pattern Analysis
and Machine Intelligence 36 (10), 1950–1962.

Dayan, P., Abbott, L. F., 2001. Theoretical Neuroscience. MIT Press, Cambridge.

Dayan, P., Hinton, G. E., Neal, R. M., Zemel, R. S., 1995. The helmholtz machine. Neural
Computation 7 (5), 889–904.

Dayan, P., Zemel, R. S., 1995. Competition and multiple cause models. Neural Computa-
tion 7 (3), 565–579.

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society B
39, 1–38.

Donoho, D. L., 2006. Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306.

Elad, M., Aharon, M., Dec. 2006. Image denoising via sparse and redundant representa-
tions over learned dictionaries. Trans. Img. Proc. 15 (12), 3736–3745.

Eldar, Y., Kutyniok, G., 2012. Compressed Sensing: Theory and Applications. Cambridge
University Press.

Ernst, M. D., Banks, M. S., 2002. Humans integrate visual and haptic information in a
statistically optimal fashion. Nature 415 (6870).

Exarchakis, G., Henniges, M., Eggert, J., Lücke, J., 2012. Ternary sparse coding. In:
LVA/ICA. Lecture Notes in Computer Science. Springer, pp. 204–212.

BIBLIOGRAPHY 89

Fine, S., Scheinberg, K., 2002. Efficient SVM training using low-rank kernel representa-
tions. Journal of Machine Learning Research 2, 243–264.

Fiser, J., Berkes, P., Orban, G., Lengyel, M., 2010. Statistically optimal perception and
learning: from behavior to neural representations. Trends in Cognitive Science 14, 119–
130.

Frolov, A. A., Husek, D., Polyakov, P. Y., 2014. Two expectation-maximization algo-
rithms for Boolean factor analysis. Neurocomputing 130, 83–97.

Goodfellow, I., Courville, A., Bengio, Y., 2011. Spike-and-slab sparse coding for unsu-
pervised feature discovery. In: NIPS Workshop on Challenges in Learning Hierarchical
Models.

Goodfellow, I., Courville, A., Bengio, Y., 2012. Large-scale feature learning with spike-
and-slab sparse coding. In: International Conference on Machine Learning 29. pp.
1439–1446.

Goodfellow, I. J., Courville, A., Bengio, Y., 2013. Scaling up spike-and-slab models for
unsupervised feature learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35 (8), 1902–1914.

Gutmann, M. U., Corander, J., 2015. Bayesian Optimization for Likelihood-Free In-
ference of Simulator-Based Statistical Models. Tech. rep., University of Helsinki,
http://arxiv.org/abs/1501.03291.

Haft, M., Hofman, R., Tresp, V., 2004. Generative binary codes. Pattern Anal Appl 6,
269–84.

Han, S., Mangasarian, O., 1979. Exact penalty functions in nonlinear programming. Vol.
17 (1). pp. 251–269.

Henniges, M., Puertas, G., Bornschein, J., Eggert, J., Lücke, J., 2010. Binary Sparse
Coding. In: Proceedings LVA/ICA. LNCS 6365. Springer, pp. 450–57.

Henniges, M., Turner, R. E., Sahani, M., Eggert, J., Lücke, J., 2014. Efficient occlusive
components analysis. Journal of Machine Learning Research 15, 2689–2722.

Hensman, J., Fusi, N., Lawrence, N., 2013. Gaussian processes for big data. In: Nichol-
son, A., Smyth, P. (Eds.), Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence 29. pp. 282–290.

90 BIBLIOGRAPHY

Hensman, J., Rattray, M., Lawrence, N. D., 2012. Fast Variational Inference in the Conju-
gate Exponential Family. In: Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C., Bottou,
L., Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 25.
pp. 2897–2905.

Hinton, G. E., Dayan, P., Frey, B. J., Neal, R. M., 1995. The ‘wake-sleep’ algorithm for
unsupervised neural networks. Science 268, 1158 – 1161.

Hoyer, P. O., 2002. Non-negative sparse coding. In: IEEE Workshop on Neural Networks
for Signal Processing XII. pp. 557–565.

Hoyer, P. O., 2003. Modeling receptive fields with non-negative sparse coding. Neuro-
computing 54, 547–52.

Hubel, D. H., Wiesel, T. N., 1959. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of Physiology 148 (3), 574–591.

Jernite, Y., Halpern, Y., Sontag, D., 2013a. Discovering hidden variables in noisy-or net-
works using quartet tests. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z.,
Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 26. pp.
2355–2363.

Jernite, Y., Halpern, Y., Sontag, D., 2013b. Discovering hidden variables in noisy-or net-
works using quartet tests. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z.,
Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 26. pp.
2355–2363.

Kingma, D. P., Welling, M., 2014. Efficient gradient-based inference through transfor-
mations between bayes nets and neural nets. In: International Conference on Machine
Learning 31. pp. 1782–1790.

Kording, K. P., Wolpert, D. M., 2004. Bayesian integration in sensorimotor learning.
Nature 427, 244–247.

Körner, E., Gewaltig, M. O., Körner, U., Richter, A., Rodemann, T., 1999. A model of
computation in neocortical architecture. Neural Networks 12, 989–1005.

Laplace, P., 1774. Memoir on the probability of causes of events. Mémoires de Math-
ématique et de Physique, Tome Sixième. English translation by Stigler, S. M., 1986.
Statistical Science 1 (19), 364–378.

Lawrence, N., Seeger, M., Herbrich, R., 2002. Fast sparse gaussian process methods: The
informative vector machine. In: Becker, S., Thrun, S., Obermayer, K. (Eds.), Advances
in Neural Information Processing Systems 15. pp. 609–616.

BIBLIOGRAPHY 91

Lázaro-gredilla, M., Titsias, M. K., 2011. Spike and slab variational inference for multi-
task and multiple kernel learning. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., Weinberger, K. (Eds.), Advances in Neural Information Processing Systems 24. pp.
2339–2347.

Le, Q., Sarlos, T., Smola, A. J., 2013. Fastfood — computing hilbert space expansions in
loglinear time. In: International Conference on Machine Learning 30. pp. 244–252.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel,
L. D., 1989. Backpropagation applied to handwritten zip code recognition. Neural
Computation 1 (4), 541–551.

LeCun, Y., Cortes, C., 2010. MNIST handwritten digit database.
URL http://yann.lecun.com/exdb/mnist/

Lee, H., Battle, A., Raina, R., Ng, A., 2007. Efficient sparse coding algorithms. In:
Schölkopf, B., Platt, J. C., Hoffman, T. (Eds.), Advances in Neural Information Pro-
cessing Systems 19. pp. 801–808.

Lee, T. S., Mumford, D., 2003a. Hierarchical Bayesian inference in the visual cortex.
Journal of the Optical Society of America A 20 (7), 1434–1448.

Lee, T. S., Mumford, D., July 2003b. Hierarchical Bayesian inference in the visual cortex.
J Opt Soc Am A Opt Image Sci Vis 20 (7), 1434–1448.

Lücke, J., 2009. Receptive field self-organization in a model of the fine-structure in V1
cortical columns. Neural Computation 21 (10), 2805–45.

Lücke, J., Eggert, J., 2010. Expectation truncation and the benefits of preselection in
training generative models. Journal of Machine Learning Research 11, 2855–2900.

Lücke, J., Sahani, M., 2008. Maximal causes for non-linear component extraction. Journal
of Machine Learning Research 9, 1227–67.

Ma, W. J., Beck, J. M., Latham, P. E., Pouget, A., 2006. Bayesian inference with proba-
bilistic population codes. Nature Neuroscience 9, 1432–1438.

Mairal, J., Bach, F., Ponce, J., Sapiro, G., 2009a. Online dictionary learning for sparse
coding. Vol. 25. pp. 689–696.

Mairal, J., Bach, F., Ponce, J., Sapiro, G., 2010. Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research 11, 19–60.

Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A., 2009b. Non-local sparse models
for image restoration. International Conference on Computer Vision 25, 2272–2279.

92 BIBLIOGRAPHY

Mallat, S., Dec. 2008. A Wavelet Tour of Signal Processing, Third Edition: The Sparse
Way, 3rd Edition. Academic Press.

Mangasarian, O., 1969. Linear and nonlinear separation of patterns by linear program-
ming. Operations research 13 (3), 444–452.

Meeds, E., Welling, M., 2014. GPS-ABC: gaussian process surrogate approximate
bayesian computation. In: Conference on Uncertainty in Artificial Intelligence 13. pp.
593–602.

Mnih, A., Gregor, K., 2014. Neural variational inference and learning in belief networks.
In: International Conference on Machine Learning 31. pp. 1791–1799.

Mohamed, S., Heller, K., Ghahramani, Z., 2012. Evaluating Bayesian and L1 approaches
for sparse unsupervised learning. In: International Conference on Machine Learning
29. pp. 751–758.

Murphy, K. P., 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.

Neal, R., Hinton, G., 1998. A view of the EM algorithm that justifies incremental, sparse,
and other variants. In: Jordan, M. I. (Ed.), Learning in Graphical Models. Kluwer.

Neal, R. M., Jul. 1992. Connectionist learning of belief networks. Artificial Intelligence
56 (1), 71–113.

Neal, R. M., 1993. Probabilistic inference using markov chain monte carlo methods. Tech.
rep., Dept. of Computer Science, University of Toronto.

Nene, S. A., Nayar, S. K., Murase, H., 1996. Columbia object image library (coil-100).
Tech. rep., CUCS-006-96.

Niell, C., Stryker, M., 2008. Highly Selective Receptive Fields in Mouse Visual Cortex.
The Journal of Neuroscience 28 (30), 7520–7536.

Nilsback, M.-E., Zisserman, A., 2006. A visual vocabulary for flower classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Vol. 2. pp. 1447–1454.

Olshausen, B., Field, D., Dec. 1997. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research 37 (23), 3311–3325.

Olshausen, B., Millman, K., 2000. Learning sparse codes with a mixture-of-Gaussians
prior. In: Solla, S. A., Leen, T. K., Müller, K. (Eds.), Advances in Neural Information
Processing Systems 12. pp. 841–847.

BIBLIOGRAPHY 93

Olshausen, B. A., Field, D. J., 1996. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609.

Opper, M., Winther, O., 2005. Expectation consistent approximate inference. Journal of
Machine Learning Research 6, 2177–2204.

Puertas, G., Bornschein, J., Lücke, J., 2010. The maximal causes of natural scenes are
edge filters. In: Lafferty, J., Williams, C. K. I., Zemel, R., Shawe-Taylor, J., Culotta, A.
(Eds.), Advances in Neural Information Processing Systems 23. pp. 1939–1947.

Raina, R., Battle, A., Lee, H., Packer, B., Ng, A. Y., 2007. Self-taught learning: Transfer
learning from unlabeled data. In: International Conference on Machine Learning 24.
pp. 759–766.

Rao, R. P. N., Olshausen, B. A., Lewicki, M. S., 2002. Probabilistic Models of the Brain:
Perception and Neural Function. MIT Press.

Rasmussen, C. E., Williams, C. K. I., 2005. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press.

Riesenhuber, M., Poggio, T., 1999. Hierarchical models of object recognition in cortex.
Nature Neuroscience 211 (11), 1019 – 1025.

Riesenhuber, M., Poggio, T., 07 2002. How visual cortex recognizes objects: The tale
of the standard model (short title: Computational object vision). The Visual Neuro-
sciences 2.

Ringach, D., 2002. Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. Journal of Neurophysiology 88, 455–63.

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review 65 (6), 65–386.

Roweis, S. T., 2003. Factorial models and refiltering for speech separation and denoising.
In: Eurospeech 8. pp. 1009–1012.

Rupp, M., Tkatchenko, A., Müller, K.-R., von Lilienfeld, O. A., Jan 2012. Fast and ac-
curate modeling of molecular atomization energies with machine learning. Physical
Review Letters 108, 058301.

Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P., 11 1989. Design and analysis of
computer experiments. Statistical Science 4 (4), 433–435.

Saund, E., 1995. A multiple cause mixture model for unsupervised learning. Neural Com-
putation 7 (1), 51–71.

94 BIBLIOGRAPHY

Schwaighofer, A., Tresp, V., Yu, K., 2004. Learning gaussian process kernels via hierar-
chical bayes. In: Saul, L., Weiss, Y., Bottou, L. (Eds.), Advances in Neural Information
Processing Systems 17. pp. 1209–1216.

Seeger, M., 2008. Bayesian inference and optimal design for the sparse linear model.
Journal of Machine Learning Research 9, 759–813.

Sheikh, A.-S., Shelton, J., Lücke, J., 2014. A truncated variational EM approach for spike-
and-slab sparse coding. Journal of Machine Learning Research 15, 2653–2687.

Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., Lücke, J., 2011a. Select and sam-
ple - a model of efficient neural inference and learning. Women in Machine Learning
Workshop (WiML 2011) in conjunction with NIPS, Malaga, Spain.

Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., Lücke, J., 2011b. Select and Sample
- A Model of Efficient Neural Inference and Learning. In: Shawe-Taylor, J., Zemel,
R., Bartlett, P., Pereira, F., Weinberger, K. (Eds.), Advances in Neural Information
Processing Systems 24. pp. 2618–2626.

Shelton, J., Sheikh, A.-S., Sterne, P., Bornschein, J., Lücke, J., 2013. Nonlinear spike-
and-slab sparse coding for interpretable image encoding. NIPS Workshop on High-
dimensional Statistical Inference in the Brain.

Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., Lücke, J., 2012a. Why MCA? Non-
linear sparse coding with spike-and-slab prior for neurally plausible image encoding.
In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (Eds.), Advances in Neural In-
formation Processing Systems 25. pp. 2285–2293.

Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., Lücke, J., 2012b. Why MCA? nonlin-
ear spike-and-slab sparse coding with spike-and-slab prior for neurally plausible image
encoding. Women in Machine Learning Workshop (WiML 2012) in conjunction with
NIPS, Lake Tahoe, Nevada.

Shelton, J. A., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A., 2014. Gp-select: Accelerat-
ing EM using adaptive subspace preselection. Women in Machine Learning Workshop
(WiML 2014) in conjunction with NIPS, Montreal, Quebec.

Shelton, J. A., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A., 2017. Gp-select: Accelerating
EM using adaptive subspace preselection. Neural Computation 29 (8), 2177–2202.

Shelton, J. A., Sheikh, A.-S., Bornschein, J., Sterne, P., Lücke, J., 2015. Nonlinear spike-
and-slab sparse coding for interpretable image encoding. PLoS ONE 10 (5), 1–25.

BIBLIOGRAPHY 95

Singliar, T., Hauskrecht, M., 2006. Noisy-or component analysis and its application to
link analysis. Journal of Machine Learning Research 7, 2189–2213.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Narayanan Sundaram, M., Ali,
M., Patwary, P., Adams, R., 2015. Scalable bayesian optimization using deep neural
networks. Tech. rep., Harvard University, http://arxiv.org/abs/1502.05700.

Tan, X., Li, J., Stoica, P., 2010. Efficient sparse Bayesian learning via Gibbs sampling.
In: IEEE International Conference on Acoustics Speech and Signal Processing. pp.
3634–3637.

Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society. Series B 58 (1), 267–288.

Trommershäuser, J., Maloney, L. T., Landy, M. S., 2008. Decision making, movement
planning and statistical decision theory. Trends in Cognitive Science 12, 291–297.

Turner, R., Berkes, P., Fiser, J., 2011. Learning complex tasks with probabilistic popula-
tion codes. In: Frontiers in Neuroscience. Computational and Systems Neuroscience.

Usrey, W. M., Sceniak, M. P., Chapman, B., 2003. Receptive Fields and Response Prop-
erties of Neurons in Layer 4 of Ferret Visual Cortex. Journal of Neurophysiology 89,
1003–1015.

Valpola, H., Oja, E., Ilin, A., Honkela, A., Karhunen, J., 1999. Nonlinear blind source
separation by variational bayesian learning. Digital Signal Processing 17 (5), 914–934.

van Hateren, J. H., van der Schaaf, A., 1998. Independent component filters of natural
images compared with simple cells in primary visual cortex. Proceedings of the Royal
Society of London B 265, 359–66.

Vul, E., Goodman, N. D., Griffiths, T. L., Tenenbaum, J. B., 2009. One and done? Optimal
decisions from very few samples. In: Annual Meeting of the Cognitive Science Society
38 (4). pp. 599–637.

Wainwright, M., Jordan, M., 2003. Graphical models, exponential families, and varia-
tional inference. Tech. rep., University of California, Berkeley.

Weiss, Y., Simoncelli, E., Adelson, E., 2002. Motion illusions as optimal percepts. Nature
Neuroscience 5, 598–604.

Wilkinson, R. D., Feb. 2014. Accelerating ABC methods using gaussian processes. Tech.
rep., University of Sheffield, http://arxiv.org/abs/1401.1436.

96 BIBLIOGRAPHY

Wood, F., Griffiths, T. L., Ghahramani, Z., 2006. A non-parametric bayesian method for
inferring hidden causes. In: Uncertainty in Artificial Intelligence 22. pp. 536–543.

Yuille, A., Kersten, D., 2006. Vision as Bayesian inference: analysis by synthesis? Trends
in Cognitive Sciences 10 (7), 301–308.

Zhang, Y., Duchi, J. C., Wainwright, M. J., 2014. Divide and conquer kernel ridge re-
gression: A distributed algorithm with minimax optimal rates. Tech. rep., University of
California, Berkeley, ttp://arxiv.org/abs/1305.5029.

Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., Carin, L., 2009. Non-parametric
Bayesian dictionary learning for sparse image representations 1. In: NIPS Workshop.

Zylberberg, J., Murphy, J., Deweese, M., 2011. A Sparse Coding Model with Synapti-
cally Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1
Simple Cell Receptive Fields. PLoS Computational Biology 7 (10), e1002250.

Appendix A

Contributions

Many aspects of my thesis have been published previously in peer-reviewed venues in the
forms of journal articles, conference proceedings, and (extended) abstracts. My contribu-
tions to each are listed below.

1. Shelton, J., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A., 2017. GP-select: Ac-
celerating EM using adaptive subspace preselection. Neural Computation 29 (8),
2177–2202.
I shared in the development of the main idea and its theoretical formulation, along
with Gasthaus and Gretton. Lücke contributed later to theoretical aspects of the
work and made suggestion for the experimental part. I wrote the original code
that was adapted for each experiment, Gasthaus helped improve the efficiency of
this code, Dai implemented this in the code for experiments using his model. I ran
most experiments (all sparse coding and mixture model experiments) and created
the corresponding graphics. Dai also ran a significant portion of the experiments
and generated the corresponding graphics. I wrote a large part of the manuscript,
and all authors took part in its composition.

2. Shelton, J., Sheikh, A.-S., Bornschein, J., Sterne, P., Lücke, J., 2015. Nonlinear
Spike-and-Slab Sparse Coding for Interpretable Image Encoding. PLOS ONE 10
(5), 1–25.
This is the journal extension of [6] and [5], the author contributions for which
are described below. For this extended work, experiments were run by myself and
Sheikh. I created all of the new graphics and wrote all new parts of the manuscript
with revisions and additions made by Lücke. Bornschein helped design the new
experiments and contributed to code to generate the corresponding data. Sterne
proof-read and polished the writing.

97

98 APPENDIX A. CONTRIBUTIONS

3. Shelton, J., Gasthaus, J., Dai, Z., Lücke, J., Gretton, A., 2014. GP-select: Ac-
celerating EM using adaptive subspace preselection. Women in Machine Learning
Workshop (WiML 2014) in conjunction with NIPS, Montreal, Quebec.
This abstract corresponds to preliminary versions of the work in [1], for which the
same author contributions apply. I created the poster and Jan Gasthaus presented
it.

4. Lücke, J., Shelton, J., Bornschein, J., Sterne, P., Berkes, P., Sheikh, A.-S., 2013.
Combining Feed-Forward Processing and Sampling for Neurally Plausible Encod-
ing Models. Computational and Systems Neuroscience 12.
This abstract was based off of the work in [6] and [8], the authors’ contributions for
which are listed below. Lücke wrote the abstract, created the poster and presented
the poster.

5. Shelton, J., Sheikh, A.-S., Sterne, P., Bornschein, J., Lücke, J., 2013. Nonlinear
Spike-and-Slab Sparse Coding for Interpretable Image Encoding. NIPS Workshop
on High-dimensional Statistical Inference in the Brain.
This abstract was based off of the work in [6] and formed the preliminary basis
for the work in [2]. Contributions as listed for [6] apply. For this abstract I ran
additional experiments with help from Sheikh, and created the poster. I presented
the poster jointly with Bornschein.

6. Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., Lücke, J., 2012. Why MCA?
Nonlinear Spike-and-Slab Sparse Coding with Spike-and-Slab Prior for Neurally
Plausible Image Encoding. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K.
(Eds.), Advances in Neural Information Processing Systems 25. pp. 2285–2293.
Lücke proposed the model in discussions with myself, Sterne, Bornschein and Sheikh.
The model parameter derivations were done largely by Sterne with contributions
from Bornschein and myself. The sampling method was developed by Sterne, Born-
schein, Sheikh, and myself. I designed and ran several experiments, created several
of the graphics, and wrote large parts of the manuscript.

7. Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., Lücke, J., 2012. Why MCA?
Nonlinear Spike-and-Slab Sparse Coding with Spike-and-Slab Prior for Neurally
Plausible Image Encoding. Women in Machine Learning Workshop (WiML 2012)
in conjunction with NIPS, Lake Tahoe, Nevada.
This abstract and its author contributions correspond to the work in [6]. I presented
the poster.

8. Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., Lücke, J., 2011. Select and
Sample - A Model of Efficient Neural Inference and Learning. In: Shawe-Taylor,
J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (Eds.), Advances in Neural

99

Information Processing Systems 24. pp. 2618–2626.
Berkes and Lücke proposed the basic idea in discussions primarily with myself and
with contributions by all authors. I wrote the preliminary code which was optimized
and parallelized by Bornschein. Bornschein and I ran all experiments and gener-
ated the corresponding graphics, with help from Sheikh. All authors contributed to
the manuscript; Berkes and Lücke wrote the majority of the introduction and discus-
sion, I described most of the experiments and results, the sampler with Bornschein,
and Bornschein described neural comparisons experiments.

9. Dai, Z., Shelton, J., Bornschein, J., Sheikh, A.-S., Lücke, J., 2011. Combining Ap-
proximate Inference Methods for Efficient Learning on Large Computer Clusters.
NIPS workshop on Big Learning: Algorithms, Systems, and Tools for Learning at
Scale.
This abstract included the results of [8] as one of our described tools for learning
at scale. I wrote large parts of the manuscript; Dai, Bornschein, and Sheikh each
contributed a section to the manuscript taken from their own research. I helped cre-
ate the poster and every author added a section to the poster corresponding to their
contributions to the manuscript. Zhenwen gave an oral presentation and presented
the poster.

10. Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., Lücke, J., 2011. Select and
Sample - A Model of Efficient Neural Inference and Learning. Women in Machine
Learning Workshop (WiML 2011) in conjunction with NIPS, Malaga, Spain.
This abstract and its author contributions correspond to the work in [8]. I presented
the poster.

	Title Page
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Problem Setting
	1.2 Background
	1.3 Roadmap
	1.4 Summary of Main Chapters
	1.5 Scientific Contributions
	1.6 Publications

	2 Select and Sample - A Model of Efficient Neural Inference and Learning
	2.1 Introduction
	2.2 A Select and Sample Approach to ApproximateInference
	2.3 Sparse Coding: An Example Application
	2.4 Experiments
	2.5 Discussion
	2.6 Supplementary Material

	3 Nonlinear Spike-and-Slab Sparse Coding for Intepretable Image Encoding
	3.1 Introduction
	3.2 Model: Nonlinear Spike-and-Slab Sparse Coding
	3.3 Inference: Exact Gibbs Sampling with Preselection
	3.4 Experiments
	3.5 Discussion
	3.6 Supplementary Material

	4GP-select: Accelerating EM using Adaptive Subspace Preselection
	4.1 Introduction
	4.2 RelatedWork
	4.3 Variable Selection for Accelerated Inference
	4.4 GP-select
	4.5 Experiments
	4.6 Discussion

	5 Conclusion and Discussion
	Bibliography
	A ontributions

